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We present a new mechanism of small-scale transition via core dynamics instability 
(CDI) in an incompressible plane mixing layer, a transition which is not reliant on the 
presence of longitudinal vortices (‘ ribs’) and which can originate much earlier than rib- 
induced transition. Both linear stability analysis and direct numerical simulation are 
used to describe CDI growth and subsequent transition in terms of vortex dynamics 
and vortex line topology. CDI is characterized by amplifying oscillations of core size 
non-uniformity and meridional flow within spanwise vortices (‘ rolls ’), produced by a 
coupling of roll swirl and meridional flow that is manifested by helical twisting and 
untwisting of roll vortex lines. We find that energetic CDI is excited by subharmonic 
oblique modes of shear layer instability after roll pairing, when adjacent rolls with out- 
of-phase undulations merge. Starting from moderate initial disturbance amplitudes, 
twisting of roll vortex lines generates within the paired roll opposing spanwise flows 
which even exceed the free-stream velocity. These flows collide to form a nearly 
irrotational bubble surrounded by a thin vorticity sheath of a large diameter, 
accompanied by folding and reconnection of roll vortex lines and local transition. We 
find that accelerated energy transfer to high wavenumbers precedes the development of 
roll internal intermittency ; this transfer, inferred from increased energy at high 
wavenumbers and an intensification of roll vorticity, occurs prior to the development 
of strong opposite-signed (to the mean) spanwise vorticity and granularity of the roll 
vorticity distribution. We demonstrate that these core dynamics are not reliant upon 
special symmetries and also occur in the presence of moderate-strength ribs, despite 
entrapment of ribs within pairing rolls. In fact, the roll vorticity dynamics are 
dominated by CDI if ribs are not sufficiently strong to first initiate transition; thus CDI 
may govern small-scale transition for moderate initial 3D disturbances, typical of 
practical situations. Results suggest that CDI constitutes a new generic mechanism for 
transition to turbulence in shear flows. 

1. Introduction 
The onset of small-scale turbulence in an initially laminar plane mixing layer - the 

so-called ‘mixing transition’ (as contrasted with large-scale stirring) - causes a rapid 
order-of-magnitude increase in product formation in a chemically reacting liquid 
mixing layer (Breidenthal 1981 ; Koochesfahani & Dimotakis 1986). In a gaseous 
mixing layer, with Schmidt number of the order of unity, a more modest 25% jump 
in mixing occurs during transition (Konrad 1976). The transverse variation of the 
species concentration p.d. f. also appears to depend crucially on the relative influence 
of large- and small-scale motions (Rogers & Moser 1994; Park, Metcalfe & Hussain 
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1994). We expect similar changes in mixing characteristics due to transition in other 
shear flows as well, since a mixing layer idealizes the effects of local shear. 

1.1. Experimental jindings 

Despite its both fundamental and practical importance, the hydrodynamics of mixing 
transition remain poorly understood, although experimental studies in unforced 
mixing layers have revealed some characteristic features. Namely, in various flow 
visualization pictures (Konrad 1976; Bernal & Roshko 1986), it appears that transition 
originates within the spanwise ‘roll ’ vortices (formed by Kelvin-Helmholtz instability), 
creating small-scale internal intermittency within these structures, which nonetheless 
remain clearly demarcated apparently even into the self-preserving turbulent region. 
Hot-wire measurements reveal that the transition location tends to scale with initial 
spatial instability growth rate (i.e. with the velocity ratio divided by the initial vorticity 
thickness), although the actual transition location varies among facilities (e.g. Jimenez 
1983 - between second and third pairings; Huang & Ho 1990 - between first and 
second pairings). 

Experience based on our extensive laboratory experimentation has been that 
transition is not directly dependent on pairings but on the level and nature of initial (i.e. 
at the mixing layer separating point) three-dimensional (3D) disturbances (Hussain 
1981). A hot-wire signal from a rolled-up pre-pairing laminar vortex consisting of 
spiralling vorticity sheets can itself produce broadband spectra like those of turbulent 
flow. Random rollup times and transverse variations of trajectories of vortices even 
before pairing can further add to the confusion caused by measured spectra. In general, 
we view transition to be the onset of fine-scale, randomly distributed, 3D spatial 
vorticity fluctuations. Without knowledge of the spatial vorticity distribution, a broad 
inertial range in the energy spectrum alone does not guarantee the occurrence of 
transition. Thus, in our experiments, we have used complementary flow visualization 
to infer transition from the onset of fine-scale mixing and highly 3D vortical motion. 
We have observed transition after the first, second, or third pairing depending on the 
initial conditions. For example, visualization revealed laminar vortices after the first 
pairing (Zaman & Hussain 1980), and Narayanan (1994) has documented three 
successive stages of pairing before transition in a mixing layer. 

These observations are consistent with transition being driven by 3D instabilities 
which grow alongside and interact with the two-dimensional (2D) instabilities 
responsible for rollup and successive pairings. In this scenario, the location of 
transition and the steps leading to it may depend crucially on the precise nature of 
upstream flow perturbations (Hussain 198 l), which determine the initial amplitudes of 
the possibly competing 2D and 3D instabilities (e.g. facility dependence). 

1.2. 30 linear instabilities 
Using the steady Stuart vortex solution to model the spanwise rolls, Pierrehumbert & 
Widnall (1 982) discovered two classes of secondary inviscid linear instability, termed 
‘helical pairing’ and ‘translative’. They also noted the presence of a ‘bulging’ mode, 
but disregarded its importance because of its slower exponential growth rate. For rolls 
formed by shear layer rollup, each class of instability is excited by certain superposed 
oblique linear instability modes of the initially parallel shear layer (Corcos & Lin 1984; 
Sandham & Reynolds 1991; Schoppa, Metcalfe & Hussain 1992). Therefore, each 
‘secondary’ instability is actually a 3D instability which grows during as well as after 
rollup. Strictly speaking, secondary instabilities excited by oblique modes attain pure 
exponential growth only after oversaturation of the rolls into a quasi-steady state 
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during long evolution without pairing (Rogers & Moser 1992, hereinafter referred to 
as RM). Nevertheless, we will use a more relaxed criterion of these instabilities’ 
occurrence based on the presence of their qualitative features, regardless of 
unsteadiness of the 2D basic flow. Since the fundamental 2D mode (responsible for 
rollup) is also present, we distinguish these instabilities from ‘chain-link fence ’ flows 
(Collis et aE. 1994), initialized with a single fundamental oblique mode pair, but without 
the most unstable 2D mode. Nygaard & Glezer (1991) demonstrated that oblique 
modes and their phase could be forced experimentally (using strip heaters on the 
splitter plate) ; initial mixing layer three-dimensionality may thus be controllable to a 
large degree. 

1.3. Nonlinear 3 0  evolution 
As pointed out by Pierrehumbert & Widnall (1982), the helical pairing instability 
causes undulations of opposite orientation for adjacent rolls (figure 1 a). In isolated 
nonlinear evolution, the occurrence of localized ‘helical’ pairings requires extremely 
long spanwise wavelengths (A,/+ = 8, where A, is the streamwise fundamental 
wavelength) (Collis et al. 1994). For the range 1 < AJh, < 4 (Schoppa et al. 1992), the 
roll crests tilt against the mean flow by self-induction, so that they become separated 
in the transverse direction while seeming to overlap in the top view (figure lb) .  For 
these moderate wavelengths, the term ‘helical pairing’ is a misnomer since local 
pairings do not occur. Despite large values of volume-integrated 3D energy, helical 
pairing modes do not lead to small-scale transition (Collis et al. 1994). Note that a 2D 
subharmonic mode was not initialized in these studies; the influence of pairing on 
helical pairing modes is discussed in 994, 5. 

The simulations of Comte et al. (1992), initialized with random 3D disturbances, 
also show nearby roll undulations of opposite orientation, reminiscent of those 
produced by the helical pairing instability. These flows are presumably transitional, 
although it is difficult to isolate the influence of a particular instability due to the 
competition and interaction of the many 2D and 3D instability modes excited by the 
random initial conditions. 

The translative-type instability excited by pure streamwise vorticity perturbations is 
documented in detail through two pairings in RM and Moser & Rogers (1993) 
(hereinafter MR). During rollup, this translative-type mode creates counter-rotating 
ribs by the stretching of perturbed vortex filaments in the braid region (the rib 
formation mechanism of Lin & Corcos 1984, first verified in the simulations of 
Metcalfe & Hussain 1990), and causes rolls to develop aligned spanwise undulations 
(figure 1 c), When pairing occurs, RM found that transition to turbulence is initiated 
by the entrapment of ribs during the first pairing (the mechanism of Huang & Ho 1990) 
if the 3D disturbance is initialized with approximately five times more energy than the 
2D rollup and pairing modes. Interestingly, if the energy in 2D and 3D modes is 
initially comparable, transition does not occur even after two pairings, and in fact 
small-scale vorticity becomes less prominent after the second pairing. As discussed 
earlier, experimental results suggest that transition is delayed, but not forever 
suppressed, by weaker initial three-dimensionality. Hence, a different transition 
mechanism may be operating when the 2D and 3D initial disturbance levels are 
comparable, or when 2D modes are amplified by forcing. 

For a bulging mode in the absence of pairing, a rapid high-amplitude standing wave 
oscillation of roll core size occurs (figure I d ) ,  without rib formation (RM). Its 
characteristic nonlinear features include formation of ‘ hoops ’ of vorticity surrounding 
nearly irrotational fluid at one nodal spanwise plane and a highly concentrated roll 
core in the other nodal plane, as evidence by a peak spanwise vorticity 10 times higher 
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FIGURE 1. Schematics of nonlinear evolution of roll configurations for: (a ,  b) helical pairing - (a )  
earlier time, (b) later time; (c) translative; and (d) bulging linear secondary instabilities. Note that 
(a, b) represents moderate spanwise wavelengths (A,/,$, 5 2), for which localized ‘helical’ pairings do 
not occur (see side view in b). In (c ) ,  a line representing the evolution of a braid vortex filament 
constitutes the genesis of rib vortices by translative instability. 
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than the initial value. Although RM did not report transition for relatively early 
bulging evolution without pairing, our preliminary work shows that with different 
(subharmonic) excitation, transition can in fact be initiated (Schoppa, Husain & 
Hussain 1993). Nevertheless, the role of this mode in transition of experimental flows 
is unknown, pending the evaluation of its evolution after pairing and alongside other 
3D instabilities undertaken in our study. 

This periodic expansion and contraction of the roll core during bulging evolution is 
reminiscent of linear Kelvin waves (Saffman 1992) and also the finite-amplitude core 
oscillation of an axisymmetric vortex studied in detail by Melander & Hussain (1994) 
(hereinafter MH) and termed ‘core dynamics’ by them. Core dynamics are 
characterized by out-of-phase oscillations of core size non-uniformity and cells of 
strong internal meridional flow, driven by twisting and untwisting of core vortex lines. 
In contrast to the axisymmetric case, core dynamics within mixing layer rolls amplify 
and can reach large nonlinear amplitudes to produce a highly 3D internal roll flow. To 
convey this analogy between bulging modes and core dynamics, developed in detail in 
9 2, the bulging instability will hereinafter be called the core dynamics instability (CDI). 

1.4. Our objectives 
In this study, we investigate alternative paths of mixing transition, distinct from the rib 
induction transition mechanism, in terms of instability-driven vortex dynamics. Vortex 
dynamics is often a useful approach for explaining turbulence physics (Hunt 1987; 
Bridges, Husain & Hussain 1990) and coherent structure interactions, but owing to 
measurement limitations, state-of-the-art experimental techniques cannot yet capture 
vortex dynamics details during transition. Consequently, we have used DNS to study 
the inception of transition from a judiciously chosen set of low-wavenumber instability 
modes, with no initial background noise. In this way, we can ascertain the effects of 
instability control, or turbulence management, and also obtain a clear view of the 
evolutionary vortex dynamics during transition. 

Throughout this paper, we extensively utilize the concepts of vortex line geometry 
and topology in discussion and analysis. Inviscid dynamics, which tend to dominate 
large-scale evolution in a mixing layer, are particularly amenable to analysis based on 
vortex lines since the advection and stretching of material vortex lines completely 
determine vorticity dynamics. Thus, physical-space mechanisms may be developed to 
explain transition in terms of changes in the vortex line geometry and topology. For 
instance, core dynamics cause a relatively complex vorticity evolution, whose 
understanding is greatly simplified once vortex line twisting and untwisting are 
recognized. Nevertheless, noting that time history cannot be assigned to vortex lines in 
viscous flows, the vortex line topology in such flows, though useful, should be 
interpreted carefully. 

Our objectives are to better understand the dynamics of CDI and its role in 
transition, through the first pairing and both with and without translative modes, with 
emphasis on 3D vortex dynamics and vortex line topology. As will be shown, CDI and 
translative (i.e. rib producing) modes can be individually isolated by prescribing precise 
phase relations of the oblique modes relative to the 2D rollup and pairing modes. Our 
goal is to first obtain a detailed understanding of CDI as a dynamical building block 
using clean CDI evolutions without significant rib vorticity. Note that we do not 
remove any braid vorticity from the CDI perturbations ; CDI naturally produces 
insignificant braid vorticity perturbations. Since both CDI and translative modes are 
quite likely to be present simultaneously in a typical experimental facility, we then 
consider both modes together to explore the effect of ribs to ensure that CDI can in fact 
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grow alongside ribs. Noting that strong rib forcing is apparently required for transition 
by rib effects alone, we are particularly interested in identifying transition scenarios 
which can operate during pairing for much smaller initial 3D disturbances. 

The remainder of the paper is organized as follows. A detailed analysis of linear CDI 
dynamics for the Stuart vortex is given in $2 to explain unique CDI characteristics. In 
$3, the initial conditions used in the DNS study are briefly outlined, followed by a 
linear analysis of the effects of pairing on CDI excitation and evolution in $4. The 
finite-amplitude CDI evolution, through pairing and both with and without ribs, is 
discussed in $ 5  along with details of the resulting transition. In $6, the key results are 
summarized, and additional interesting questions raised by our results are discussed. 
Two important equations utilized in $2 are derived in Appendices A and B, and the 
DNS algorithm and code validation checks are briefly discussed in Appendix C. 

2. Stuart vortex CDI 
To understand the amplifying oscillation of roll core size characteristic of CDI, we 

analyse CDI eigenmodes obtained from linear stability analysis of the Stuart vortex. 
In particular, we illustrate and analyse quantitatively the CDI perturbation evolution 
during its oscillation period. Distinctive features are identified to guide interpretation 
of nonlinear CDI evolution and also to ascertain its influence when other secondary 
instabilities are present. The dependence of CDI oscillation frequency and growth rate 
on spanwise wavenumber p and Reynolds number Re is also determined. 

2.1. Linear stability analysis 

CDI modes of a Stuart vortex row are calculated following Pierrehumbert & Widnall 
(1982). A non-separable eigenvalue problem is formulated by linearizing the inviscid 
vorticity equation around the steady Stuart vortex solution 

whose spanwise vorticity 0, is shown in figure 2(a) for a vorticity concentration 
parameter p of 0.4 and a mean vorticity thickness 6, of unity. Note that since the Stuart 
vortex streamwise wavenumber is given by a, = 2/6,, it cannot be varied independently 
of 6,. We find that p = 0.4 provides the best fit of the quasi-steady oversaturated 
Kelvin-Helmholtz rollup spanwise vorticity w, distribution at non-dimensional time 
t = 16 (rollup saturates at t, - 10; see 53 for non-dimensionalization) shown in figure 
2(b), in terms of x and y profiles of w,  through the roll centre. Note that the w, 
distribution at t, is unsteady and is thus not used for choosing p. As a consequence, the 
instability results in this section apply only approximately to Kelvin-Helmholtz rolls 
if their oversaturation is prevented by pairing growth. 

We now consider temporally evolving 3D perturbations (denoted by primes) to the 
2D Stuart basic flow (denoted by capitalized quantities). Since the basic flow depends 
on both x and y and modes for +p and -/3 differ only in the sign of spanwise velocity 
ui, the spatial structure and temporal evolution of superposed kj' CDI modes are of 
the form 

("i) (x, y ,  z ,  t )  = Re [i (".) (x, y )  ei"s5 cut] sin (j 'z) ,  
WY WY 

wi(x, y ,  z ,  t )  = Re [c;j,(x, y )  ei"r" cut] cos (pz), 
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FIGURE 2 .  Comparison of w, distributions of (a) the inviscid steady Stuart vortex solution for a 
vorticity concentration parameter of p = 0.4 in (I), and (b)  oversaturated quasi-steady Kelvin- 
Helmholtz rollup at t = 16(t ,  = 10) with Re, = 500. The contour increment is 0.0552,, and the 
square in (a) identifies the rake in z,,~ for the vortex surface cross-sections in figure 4. 

where the eigenvalues g are generally complex and the tilded complex eigenfunctions 
are periodic in x with the Stuart vortex wavenumber, a,. Note that the perturbation 
vorticity distribution (e.g. figure 1Oc) is such that the perturbation circulation is zero 
in each ( x ,  y)-plane, so that there is no spanwise variation of circulation or free-stream 
velocity in the perturbed flow. Since CDI is a fundamental mode instability (i.e. with 
wavenumber as), translative modes of the form (2) also appear as solutions. The two 
modes are distinguished by the fact that both streamwise (oj) and transverse (oh) 
vorticities are antisymmetric about the vortex centre for CDI but symmetric for the 
translative instability (recall figure 1 c, d ) .  

The stability problem is solved numerically using a spectral collocation technique, 
with eigenfunctions expanded using sines and cosines in x and Chebyshev polynomials 
with tanh mapping in y .  To study a more concentrated Stuart vorticity distribution 
( p  = 0.4) than that analysed by Pierrehumbert & Widnall ( p  = 0.25), we doubled their 
resolution in both x and y to 16 modes. 

2.2. Axisymmetric vortex core dynamics 
Since CDI is oscillatory with frequency crt, its perturbation structure varies during the 
oscillation period. We find that the resulting CDI evolution is very similar to the 
oscillation of an axisymmetric vortex with initial axial variation of core size studied by 
MH, which serves as the reference case for comparison and is thus briefly reviewed 
here. 

2.2.1. Vortex line twisting and meridional advection 
A schematic of the vortex line and vortex surface evolution for inviscid axisymmetric 

core dynamics, adapted from MH, is shown in figure 3 for a full period of oscillation 
(note the distinction between vortex surfaces on which vortex lines lie and vorticity 
surfaces which can be crossed by vortex lines, both discussed in this paper). The class 
of axisymmetric vortex surfaces consists simply of constant ruO surfaces, where uO is the 
azimuthal velocity around the vortex. Also shown in figure 3 are schematic streamlines 
of meridional flow (i.e. u, and u,) in a plane through the vortex centre. In the initial 
state (figure 3 a), the diameter of this axisymmetric vortex surface, a representative core 
size, varies sinusoidally along the axis, with untwisted vortex lines (i.e. oO = 0) and 
hence no initial meridional flow. Because the same circulation (r = 27cru,) is enclosed 
by a smaller core radius at pz = 7c than at pz = 0 - the symmetry planes hereinafter 
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FIGURE 3. Schematic of one oscillation period for axisymmetric core dynamics at a finite amplitude, 
adapted from MH. The vortex lines shown lie on one axisymmetric vortex surface, and the dashed 
lines represent streamlines of the meridional flow, induced by helically twisted vortex lines. Note that 
no amplification of core dynamics occurs in the axisymme&c case,-in contrast to the mixing layer 
CDI. 

denoted by z ,  and zo respectively - uo around this surface is higher at z ,  than at zo. Since 
the angular velocity is given by 8 = d8/dt = uo/ r ,  both the smaller core radius and 
faster uo at z, cause faster angular rotation of this vortex surface at z, relative to z,. 
Thus, azimuthal vorticity wo and hence cells of meridional flow are immediately 
generated as vortex lines on this and other vortex surfaces are twisted by this 
differential angular velocity, as reflected in figure 3(b).  Recall that vortex lines are 
material and hence carry time history only in an inviscid flow. 

In turn, the meridional flow cells in figure 3(b)  induce two axisymmetric saddle 
flows: one with inward u, and w,  stretching near the axis near zo, and another with 
outward u, and w, compression near z ,  (outside this vortex surface, lower-level outer- 
core w, is compressed near z, and stretched near z, by the meridional flow). Since 
ru0 = const, vortex surfaces are simply advected by meridional flow in an inviscid 
axisymmetric flow (Batchelor 1967), the u, induced by the meridional flow cells reduces 
the core size non-uniformity, eventually creating at one instant a virtually uniform 
vortex surface containing twisted vortex lines (figure 3 c). At this point, the meridional 
flow cells continue to contract the vortex core at zo and expand it at z,, so that 8 around 
the vortex surface becomes higher at zo than at z ,  (figure 3 d) .  The differential 8 now 
acts to untwist the vortex lines until a nearly untwisted state is reached (figure 3e),  as 
in figure 3 (a) except for a spanwise phase shift of the core size variation. Note that in 
their study of nonlinear-amplitude perturbations at finite Re, MH observed that the 
vortex lines became only approximately untwisted at this stage. In the remaining half- 
‘period’, the same dynamics cause the vortex to return to nearly the initial state, as 
represented by figure 3 (e-h). 

2.2.2. Coupling of core size non-uniformity and meridional f low 
As pointed out by MH, the evolutions of differential 4 (or equivalently the core size 

variation) and meridional flow are coupled, in that differential 8 is responsible for 
meridional flow production through vortex line twisting or untwisting, while the 
meridional flow is responsible for changes in the core size and hence in differential 8. 
The two-way coupling causes the core non-uniformity and meridional flow cell 



Small-scale transition in a plane mixing layer 

-. .- 
; I  ' I  ! ... "..... .... . .._..... .... 

, :\ 
........ 

. . . .  .._ : 
- t, $,, \ 

.......... 
"n 

_ -  

. /+. 
: 
1.- .. 

...... ...... ......... * .  'i . . ...... ......... * .  'i . . 

31 

(g) 

. . -=\ 
.- , * .  

. *  
\%- _-. - 

.- 
! .............. 

/-. ' . ' ' . .,:,. 
.-.. ............ 

FIGURE 4. Cross-sections in zo and z ,  of the vortex surfaces begun in z,,~ as the square rake in figure 
2(a) at times CT~ t of (c) 3n/8, (d) 5n/8, (e) 7n/8, ( f )  9n/8, and (g )  1 ln/8 for the Stuart-vortex P/a, = 1 .O 
CDI eigenmode. Note that rakes of the same cross-sectional shape at different times do not represent 
time evolution. In each frame, a solid line denotes the same vortex surface in a different z-plane. The 
amplitude of the CDI eigenmode has been amplified relative to the Stuart basic flow beyond the range 
of linear theory validity, for illustrative purposes only. Note that (a) and (b)  are absent because the 
frame labels correspond to those in figure 3. 

strength to oscillate out-of-phase (e.g. compare figures 3a, 3c). In this axisymmetric 
case, MH found that the core dynamics are damped by viscosity and eventually die out, 
in contrast to the exponential oscillatory growth of CDI that we find. 

2.3. CDI perturbation evolution 
With a qualitative understanding of axisymmetric core dynamics, we now consider the 
perturbation effect of the inviscid /3/czs = 1 .O CDI linear eigenmode on the Stuart vortex 
at five stages of half the CDI oscillation period (2x/n,). 

2.3.1. Vortex surface oscillation 
To illustrate the core oscillation due to CDI in this non-axisymmetric 3D flow, we 

arbitrarily represent the perturbed Stuart vortex core by the vortex surface passing 
through the square shown in figure 2(a)  in the plane /3z = x / 2 ,  hereinafter denoted z,,~. 
In figure 4, the vortex surfaces corresponding to each stage are shown in z,, and z,, 
where u, = w, = wy = 0 for all time for CDI (as in figure 3) due to a symmetry 
preserved by the linear perturbation equations as well as the fully nonlinear 
Navier-Stokes equations. Note that we are not tracking the evolution of a tagged 
vortex surface since the rake of vortex lines in z : , ~  is fixed. Since a vortex surface 
encloses constant circulation, its cross-section in z,, and z, encloses the same 
circulation. Also, because each vortex surface passes through the same square in z,,~, 
in which (0: is always zero, all cross-sections in figure 4 enclose the same circulation. 
Thus, the average w, within the core, which is inversely proportional to the enclosed 
area, may be inferred and compared between zo and z,. Note that in figures 4 and 5 ,  
the exponential growth factor effrt in (2) is suppressed, and the perturbation amplitude, 
amplified for clarity, exceeds the range of linear theory validity. In figures 4-7, the 
frames are labelled (c)-(g) to reflect correspondence with the phases in the frames 
(c)-(g) in figure 3 for the axisymmetric case. 

At the stage of figure 4(c), the CDI-perturbed vortex surface has similar cross- 
sectional area in z,, and z,, indicating virtually uniform average core w,. Upon 
evolution, the core clearly contracts at z ,  while expanding at z ,  (figure 4d, e), analogous 



32 W. Schoppa, F, Hussain and R. W. Metcalfe 

(4 (4 (4 (f) (g)  

FIGURE 5. Core vortex lines started in z,, on a rake along y = 0 at times r6 t of (c)  3n/8, ( d )  5n/8, (e) 
7n/8, cf) 9n/8, and (g) 1 la/8 for the Stuart-vortex P/a, = 1 .O CDI eigenmode, illustrating untwisting 
and subsequent retwisting of core vortex lines during this half period. The amplitude of the CDI 
eigenmode has been amplified relative to the Stuart basic flow for illustrative purposes. 

to figure 3 (d, e)  for axisymmetric core dynamics. Although the vortex line twisting (or 
untwisting) due to core size non-uniformity cannot be quantified simply from the 
variation of vortex surface cross-sectional area (as is the case for axisymmetric core 
dynamics, see MH), the core geometry of figure 4(e)  is expected to cause vortex line 
twisting in the light of the more compact core and higher average w, in z,  than in z,. 
During the remaining quarter-cycle, core expansion and contraction occur at z ,  and z ,  
respectively until the core geometry in figure 4(g)  is reached, which is identical to that 
in figure 4(c) except for a spanwise phase shift. In the remaining half-cycle, the same 
evolution as in figure 4(d-f) occurs (with a spanwise phase shift) upon return to 
precisely the core geometry of figure 4(c) .  Therefore, the core size oscillation due to 
CDI described by figure 4(c-g) appears analogous to the axisymmetric case (figure 
3 c-g). 

2.3.2. Vortex line twisting and meridionalpow oscillation 
To further explore the analogy between CDI and axisymmetric core dynamics, we 

show in figure 5 core vortex lines started as a rake on the line ( y  = 0, z = 0) during the 
same times of figure 4. When viewing along the -z-direction (from bottom to top), the 
vortex lines in figure 5 (c) are helically twisted clockwise in z, relative to their position 
in zo (and zzn). This helical twist is also reflected in figure 4(c)  by the solid rake of vortex 
lines on one side of this vortex surface, which is twisted clockwise at z,  relative to its 
position at z,. The vortex lines then begin to untwist (figure 5d) ,  until the state in figure 
5 (e) is reached, which reflects virtually untwisted vortex lines and core expansion in z ,  
relative to z,. This untwisting is also indicated by the rotation of the vortex surface 
sides in figure 4(d,  e )  and is consistent with the more compact core (i.e. faster rotation) 
in z ,  relative to z, observed at these times. Note that twisting has a phase lag as a 
function of radius; for example, when coiling near the axis is in one direction, it may 
be in the opposite direction at larger radii (figure 5d) .  Since the core non-uniformity 
is large in figure 4(e)  (near its peak), the vortex lines then reverse their twist to the 
counter-clockwise direction at z, relative to z,, (figures 4 f ,  5f> and then continue to 
twist in this direction (figures 4g,  5g), as in figures 4(c) ,  5(c) except for an opposite 
twist direction. Thus, CDI involves periodic twisting and untwisting of core vortex 
lines, as is also the case for axisymmetric core dynamics. 

The meridional flow cell oscillation due to vortex line twisting and untwisting is 
shown in figure 6 by the evolution of wj. on the ( y ,  z)-plane passing through the vortex 
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FIGURE 6. Perturbation velocity vectors and w: in the ( y ,  z)-plane through the Stuart vortex centre 
at times gi t of (c) 3n/8, ( d )  5n/8, (e)  7n/8, (f) 9n/8, and ( g )  11x/8 for the Stuart-vortex P/a, = 1 .O CDI 
eigenmode, showing the meridional flow cells and their subsequent sign reversal. Negative w: 
contours are shaded. The two straight lines denote the 25 % contour of Stuart w,, shown to indicate 
core size. 
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centre (corresponding to w, in figure 3), hereinafter identified as a meridional plane for 
simplicity despite the non-axisymmetric geometry. The twisted vortex lines in figure 
5 (c) produce a quadrupole structure of w> (figure 6 c), comprising meridional flow cells 
which are subsequently weakened by vortex line untwisting (figure 6d,  e). Then, as the 
vortex line twist reverses, the meridional flow cells reverse sign (figure 6 f )  and 
strengthen to reach the distribution in figure 6 ( g ) ,  differing from figure 6(c)  only in 
sign. The structure of the meridional flow cells in an (x, y)-plane (investigated because 
of non-axisymmetry) during their reversal is shown in figure 7 by vorticity in zniP. This 
figure is typical of other z-planes as well because of the sinusoidal z-variation of the 
vorticity perturbation. It is clear from this figure that the meridional flow cells are 
characterized by like-signed azimuthal vorticity w; in the cylindrical coordinate system 
defined in figure 7(g), except when the cells are weak (figures 6e ,  7e ) ,  as is the twisting 
of vortex lines (figure 5e). Note also in figure 7 that the braid vorticity perturbations 
for CDI are weak relative to the core perturbations (compare perturbation vorticity 
vector lengths inside and outside the ellipse), in contrast to the translative mode which 
has strong braid vorticity, responsible for rib excitation (RM). The weakening, 
reversal, and subsequent restrengthening of the meridional flow cells' w i  reflects the 
untwisting and retwisting of core vortex lines (figures 4, 5 )  during this half of the CDI 
oscillation period. 

2.4. Coupling of core size non-uniformity and meridional Pow 
Figures 4-7 illustrate that CDI causes core oscillation and meridional flow generation 
by vortex line twisting, both of which are qualitatively consistent with the axisymmetric 
core dynamics schematic in figure 3 .  An approximate 90" shift between times of 
maximum core non-uniformity and peak meridional flow strength is also evident for 
CDI. Thus, this suggests a two-way coupling of core size variation and meridional 
flow, analogous to that responsible for their out-of-phase oscillations in the 
axisymmetric case (explained by MH in terms of coupling of the swirl and the 
meridional flow). 

In the following, we show that the oscillatory component of CDI growth is caused 
by two complementary coupling mechanisms : (i) generation (both positive and 
negative) of meridional flow cells due to core size non-uniformity and (ii) core size 
changes caused by meridional flow. With reference to figures 4-7, it is easy to see that 
two mechanisms are acting: mechanism (i) causes twisting of vortex lines (framesf, g)  
from the state in frame (e) ,  in which the core vortex lines are virtually untwisted, while 
mechanism (ii) is responsible for creating core size non-uniformity (frame e)  from a roll 
with little core size variation (frame c). To understand this coupling quantitatively, we 
now evaluate the P/a, = 1.0 CDI eigenmode using integral relations which clearly 
reveal both mechanisms. 

2.4.1. Generation of meridional Pow cells 
We first define a cylindrical coordinate system (Y, 8, z )  at the Stuart vortex centre, 

with z corresponding to the spanwise direction and ( r ,  8) spanning the (x, y)-plane as 
in figure 7(g ) .  As pointed out earlier, the meridional flow cells are characterized by like- 
signed azimuthal vorticity w i  between zo and z, (also between z, and z2J. In this regard, 
volume-integrated '1 = w,/r represents the average of circulation on all meridional 
( r ,  z)-planes and is thus used to characterize the meridional Pow cell strength in the 
following. 
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FIGURE 7. Perturbation vorticity vectors in z,,~ at times gt t of (c) 3 ~ / 8 ,  ( d )  5@3, (e)  7n/8, (,f) 9n/8, and 
( g )  11@3 for the Stuart-vortex p/a, = 1.0 CDI eigenmode. The 25 % contour of Stuart w, is shown 
by a solid line contour, and the (Y, 8) coordinate system used in analysis is defined in (g). Note that 
in this cylindrical coordinate system, the meridional flow cells (when strong) are characterized by like- 
signed wi ,  whose sign reverses as roll vortex lines untwist and then retwist during these times. 
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L 

7/=0 lgI>O 

FIGURE 8. Explanation for generation of ?j (equation (4)) by vortex filament twisting resulting from 
core size non-uniformity. Note that the filament’s volume-integrated 7 between zo and z, is governed 
solely by the angular velocity B variation between these two symmetry planes. 

By manipulation of the o,-component of the vorticity equation, we show in 
Appendix A that the inviscid evolution of 7 for a general 3D flow can be expressed as 

2 av uo 
= - + u - v y  = V . - o .  r Dt at 

(3) 

Upon volume-integration and use of the divergence theorem, (3) may be rewritten as 

for an arbitrary volume V bounded by aV. A simple physical interpretation of the 
source term on the right-hand side of (4) is obtained by integrating over the vortex 
filament sketched in figure 8, containing circulation ST and bounded by zo and z, 
(in which u, = 0 for all time). The evolution of this filament’s volume-integrated 7 
is governed simply by the difference of its angular velocity 4 = uo/r  in zo and z ,  as 
d/dt( 7 d V )  = W(e(z , )  - 6(zo)),  i.e. filament twisting. Since the filament is material, 
the volume-integrated material derivative in (4) becomes ordinary time-differentiation 
of volume-integrated 7. 

To relate this interpretation to CDI and meridional flow generation, we now sum 
over all vortex filaments between zo and z,, equivalent to expressing (4) as 

where V,  bounded by zo and z,, extends over the entire computational domain in x and 
y (or equivalently r and 0). Because of boundary conditions (periodic in x and z and 
9 = 0 on y boundaries) and the fact that u, = 0 in zo and z,, the material derivative in 
(4) reduces to ordinary time-differentiation. Subject to these conditions, relation (5) is 
valid for 3D fully nonlinear evolution, with linear perturbation evolution included as 
a special case. The above physical interpretation of (4) explicitly demonstrates that core 
size non-uniformity, characterized by the right-hand side of ( 5 ) ,  governs the meridional 
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FIGURE 9. Time evolutions of (a) J (dV and its generation term Aew (left- and right-hand sides of 
equation (5)); (b) terms governing AO,,, evolution (right-hand side of (7)); and (c) the components of 
the right-hand side of (7) which are in-phase with AOw and 180" out-of-phase with S f d V  for the 
Stuart-vortex P/a, = 1.0 CDI eigenmode. The same ordinate range is used in all figures, although 
these quantities are of an arbitrary (linear) perturbation amplitude. The arrows denote the times of 
frames (c-g) in figures 4-7. 

flow cell strength ( s  7 d V )  evolution through a net twisting of vortex filaments. Thus, 
the core size non-uniformity due to CDI will be characterized by Ado, in the following. 
Relation ( 5 )  represents a major simplification since now only the evolutions in z ,  and 
zo must be studied to understand how 1 7  d V evolves. 

We show in figure 9(a)  the evolution of perturbation J?'dV(q' = w;)/r)  and Adw 
over one period of oscillation for the P/as = 1.0 CDI mode, where the times of 
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frames (c-g) in figures 4-7 are also identified. The meridional flow cells are nearly 
their strongest in frames (c) and ( g )  and effectively of zero strength in frame (e),  
while Ab,,, is approximately zero in frames (c) and ( g )  and approximately its strongest 
in frame (e) ,  when core size non-uniformity is maximum. This is similar to the 
approximate 90" temporal phase difference between the meridional flow and core size 
oscillations for axisymmetric core dynamics (MH). Therefore, j 7' d V and Ab, do in 
fact accurately represent the meridional flow strength and core size non-uniformity 
respectively, and will be used extensively to characterize these CDI features. 

In summary, during CDI evolution, the strength and sign of the meridional flow cells 
( j q' d V )  changes by vortex filament twisting due to core size non-uniformity between 
zo and z ,  (Ab,). 

2.4.2. Generation of core size variation 
Having shown how Ab,,, drives 7' dV evolution, we must now determine how core 

non-uniformity is generated by the meridional flow to complete the coupling scenario. 
In cylindrical coordinates, the inviscid evolution of Ab,d, subject to the conditions 
u z r  = w = w0 = 0 in zo or z,, is governed as 

I I1 

an expression which is valid for fully nonlinear evolution; see Appendix B for 
derivation. To interpret (6)  for CDI, we first linearize around the Stuart basic flow: 

d A e w  - it: 1" ,,,/ d V = - 1[2": ' T  '0 252Z ': '0 2QZ ' r  ui 
d t  r2 + r 2  + r 2  

I'a I'b I'c II'a II'b 

The evolution of each term for the /3/aS = 1.0 CDI eigenmode, shown in figure 9(b), 
illustrates that the azimuthal pressure gradient terms II'a, b are small (as is expected 
within a vortex) and that term I'b dominates terms I'a, c, which approximately cancel. 

It is clear from figure 6 that ui in the dominant term I'b is induced by the quadrupole 
structure of the meridional flow cells and is of opposite sign in z,, and z,. For instance, 
in figure 6(c,  d ) ,  inward and outward ui appears near z,, and z, respectively as the core 
contracts near zo and expands near z, (figure 4c ,d ) .  Thus, the maximum rates of 
decrease and increase of Ad,,, occur near the times of figures 6 (c) and 6 (g) respectively, 
when the meridional flow cells are nearly their strongest (figure 9a).  Also, IAO,,,l is nearly 
maximum at frame (e )  of figures 4 7 ,  when the meridional flow cells are weak (cf. 
figures 4e  and 6 e  with reference to figure 9a) .  

Therefore, the core size non-uniformity (Ab,) evolves primarily in response to ui 
(through term I'b in (7)), which is induced by the meridional flow cells and thus 
oscillates according to the cell strength ( j  7' d V ) .  

2.4.3. Oscillation and exponential growth 
Up to this point, we have shown that for CDI, the meridional flow cell strength 

[ 7' dV evolves in response to core non-uniformity Ae,,, and that Ad, is in turn driven 
by the meridional flow cells' induced ui. Based on this two-way coupling and the phase 
shift between S r ' dV and Ab,,, evolutions in figure 9(a) ,  one might surmise that the 
coupling scenario is now complete. However, in simplifying the discussion to draw an 
analogy with axisymmetric core dynamics, we neglected the physics responsible for 
CDI's key feature - its exponential growth. 
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FIGURE 10. Spatial distributions of (a)  SZ, Uo/r,  (b) u:/r,  and (c) 0: for the Stuart-vortex CDI 
eigenmode in z,  at crt t = 7 ~ / 8 ,  illustrating how additional area-averaged core non-uniformity (AOJ 
is generated even at a time of weak meridional flow (Sr’dV - 0). Note that the basic flow vorticity 
D, is negative, so that the perturbation in (c) represents expansion of the vortex in z, (with 
corresponding contraction in zo). Negative contours are shaded. 

To address this physics, we first note that Ab, evolution for (non-axisymmetric) CDI 
is governed in (7) primarily by the meridional flow through term I’b, but not solely 
because of basic flow and perturbation non-axisymmetry. As shown in figure 9 (c), the 
right-hand side of (7) may be decomposed into components 180” out-of-phase with s 7‘ d V and in-phase with A8,: -Iv d2 9’ d Y = - C, lv y’d V+ C2 AbW 

d t2  

where C, and C, are positive constants. For C, < 2C:/’, the solution of (8) is of the 
form s 7’ d V = Cexp (a, t )  sin (ai t + q5), where gr = C,/2 and ai = (C, - a:)’’’ are the 
growth rate (ar = 0.25) and oscillation frequency (ai = 1.25) respectively of the 
/?/a, = 1 .O CDI mode. Therefore, the relatively small component of the right-hand side 
of (7) which is in-phase with AboJ in figure 9(c) (related by C, in (8)) is responsible for 
the exponential growth of CDI. The component of the right-hand side of (7) which is 
in antiphase with j 7’dY (primarily term I’b) represents meridional advection and is 
responsible for the oscillatory component of CDI growth, as for axisymmetric core 
dynamics. 

In essence, CDI entails a self-forcing of A8, (i.e. proportional to Ae,), causing its 
oscillation to amplify exponentially and producing exponential oscillatory growth of 
j 7 ’ d V  as well through (5). As shown by comparison of figures 9(b) and 9(c), this 
forcing is composed of terms I’a, II’a, and II’b in (7), which are approximately in phase 
with Adw and partially cancelled by term I’c. Note that each of these terms vanish 
identically for an axisymmetric basic flow and perturbation. There is an additional 
large contribution from a component of term I’b which is in phase with Ab,,,. The origin 
of this term-I’b contribution is best revealed by the distributions of 9, U,/r  (figure 
IOU) and ui/r (figure lob) in z, at ait = 7x/8, when the meridional flow cells are 
weakest (i.e. J f d V  - 0). At this time, the integrated ui / r  is small (consistent with 
weak meridional flow), but a quadrupole distribution of positive and negative u i / r  
exists (figure lob). This quadrupole ui/r distribution corresponds to the non- 
axisymmetric u: perturbation in the outer core region (figure 1Oc) and is thus effectively 
independent of the meridional flow. Coupled with the non-axisymmetric 9, U,/r 
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distribution, integration of the product of figures lO(a) and 10(b) will clearly be 
positive at this time (negative term I’b), even though the meridional flow is weak. 
Physically, exponential CDI growth is reliant on a special core perturbation which 
increases the magnitude of Adm independently of the meridional flow, represented by 
the component of the right-hand side of (7) which is in-phase with Aew. The associated 
delicate balances between basic flow and perturbation actions require a detailed local 
analysis, which is beyond the scope of the present effort. 

As a special case of (8), we now briefly return to the axisymmetric linear-amplitude 
core dynamics mode to understand why similar exponential growth does not occur in 
this case. For an axisymmetric basic flow and perturbation, terms II’a, b in (7) are 
identically zero and terms I’a, c also vanish since U, must be zero for a steady inviscid 
basic flow. Since ui  is induced only by w;i for an axisymmetric mode (i.e. w;l = au:/az 
and the au;/aO term in w: vanishes) the right-hand side of (7), which reduces to term 
I’b, is driven entirely by the meridional flow. Provided that each meridional flow cell 
is dominated by like-signed w;i (i.e. non-vanishing 7’ d V )  as in figure 3, the surviving 
term I’b in (7) may then be modelled as 

Since the sign of term I’b in this case depends only on that of u; and hence s 7’ dV 
(recall that both Qz and U, are steady and everywhere negative), J r ’dV oscillates in 
phase with term I’b, with proportionality constant --cr;. The solution of (9) is of the 
form Jq-’dV= Csin(vt t+$) ,  which is simply an oscillation of frequency gi with no 
long-term growth. This is consistent with the observed inviscid neutral oscillation of 
infinitesimal axisymmetric z-varying perturbations to an axisymmetric Rankine vortex 
(i.e. a core of constant Q,) (Saffman 1992) and an axisymmetric vortex containing a 
two part core, namely an inner core of constant vorticity and an outer core with a 
power-law velocity profile (i.e. 0, - r-’”), surrounded by irrotational fluid (Broadbent 
1984). Note that these theoretical results and (9) apply only to modes with the least 
internal structure (i.e. no sign change of w;l in r within the core). In summary, although 
(8,9) cannot be rigorously derived from (7), they are useful physical models which 
highlight the essential vortex dynamics responsible for both exponential growth of CDI 
and neutral oscillation of axisymmetric core dynamics. 

2.5. Dependence on Re and /3 
With an understanding of the inviscid dynamics of the /3/aS = 1 .O CDI mode, we now 
consider the influence of Stuart vortex Reynolds number Re = (AU/2) S,/v and /3 on 
CDI oscillation and growth. 

2.5.1. Oscillation frequency 
The dependence of the CDI oscillation frequency cri on Re and /3 is shown in figure 

11 (a), with the inviscid data obtained through stability analysis. Data for finite Re were 
obtained through DNS by initializing with a low-amplitude inviscid eigenmode and the 
p = 0.4 Stuart vortex to permit relaxation into the corresponding viscous mode, which 
is detected by the establishment of a consistent oscillation period of volume-integrated 
3D energy. The inviscid data suggest that cri approaches an asymptotic value as ,!I is 
increased, a trend which also occurs for a Rankine vortex as the axial wavenumber of 
its axisymmetric eigenmode is increased (Saffman 1992). For a compact Gaussian 
axisymmetric vortex with a finite-amplitude axial core size variation, MH observed 
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FIGURE 11. The dependence of Stuart-vortex CDI (a) oscillation frequency and (b)  growth rate on 
spanwise wavenumber and Reynolds number. The thick line in (b)  represents inviscid growth rates 
of Stuart vortex translative instability and is shown for comparison. 

that the oscillation frequency increased with Re toward an apparently finite inviscid 
limit for a fixed axial wavenumber, which is also consistent with figure 11 (a). 
Therefore, similar trends of core oscillation frequency with Re and /3 occur for both 
axisymmetric vortices and CDI. 

2.5.2. Growth rate 
The positive growth rate gr of CDI indicates that this instability is potentially 

rDrnnncihle fnr larnp rhannec in the harip flnw The ornixrth rate rlenenrlenrp nn RP 2nd 

/? is compared to the inviscid linear growth rate of the translative instability in figure 
11 (b). Like the translative instability, CDI is broadband and stable in the two- 
dimensional limit. However, in the inviscid limit, the CDI growth rate is about half that 
of the inviscid translative instability over this range of ,8. In addition, a sharp /? cutoff 
due to viscous effects occurs for even moderate Re, which must be kept in mind when 
ascertaining CDI's influence using DNS. Note that by measuring growth rates using 
DNS at finite Re, we also include the diffusion of the basic flow itself. Nevertheless, the 
small viscous reduction of CDI growth rate at small /? indicates that this effect is 
negligible at these moderate Re. 

Owing to resolution limitations, we cannot determine with certainty whether CDI 
reaches an asymptotic growth rate with increasing /3, as is the case for the translative 
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instability (Pierrehumbert 1986; Bayly 1986). Thus, it would be interesting to know 
whether CDI growth is similarly sustained in the asymptotic short-wave limit. In any 
event, we find in $4.2 that pairing strongly suppresses short-wave linear CDI,; 
consequently, small-scale energy growth in the linear regime of CDI is possible only in 
the absence of pairing. 

In summary, CDI involves oscillations of core size non-uniformity and meridional 
flow, represented accurately by A6,0 and 7’ d V respectively. These characteristic CDI 
features are two-way coupled, in that A8(o generates f d V  through vortex line 
twisting, while Ad,,, is predominantly generated by I[ 7‘ d V through meridional 
advection. While these characteristics are analogous to axisymmetric core dynamics, 
additional Ad,,, generation occurs for CDI even when 7’ d V  is weak, an effect which 
produces moderate exponential growth. 

3. Direct numerical simulation 
Before analysing CDI of Kelvin-Helmholtz rolls using DNS, we first define the 

initial conditions and relevant terminology. We study the 3D evolution of a temporally 
evolving plane mixing layer through pseudo-spectral integration of the incompressible 
Navier-Stokes equations in rotation form, i.e. 

- = u x w - - 0  -+- +vv2u, 
au 
at t :I 

8 . u  = 0. 

Details of the simulation algorithm and code validation checks are discussed in 
Appendix C. 

3.1.  Initial conditions 
All simulations are initialized with low-wavenumber 2D and 3D (i.e. oblique) 
instability modes of the initial parallel shear layer, defined by the mean velocity profile 

U(V) = uo tanh (2V/60), ( 1  1) 

where Uo is the half-velocity difference and 6, = 2U,/(dU/dy)l,,, is the initial vorticity 
thickness. All quantities are non-dimensionalized by 6, and U,,, and the initial 
Reynolds number, Re, = Uo60/v, is 300 for all simulations. 

The vorticity perturbations of (1 1) considered here may be expressed in general as 

O ’ ( X , Y ,  z ,  0)  = z A,,O Re@z(n,o)(Y) eiafn5) 2 
,=I 1 

, 2  

+ n-1 c I (1 ~ , ( , , p , / ~ ~ ) ( ~ ) s i n ( P ,  z +  ) ei(afez+$n) ] 9 (12) 

where the A are vorticity perturbation amplitudes, the tilded functions are specific 
linear instability eigenfunctions, af is the fundamental wavenumber of the most 
unstable 2D (rollup) mode, and the pare  the spanwise wavenumbers of the 3D oblique 
modes. In the following, individual modes are referred to in terms of their 01 and /3 as 
(a/ct,,/3/~f); see figure 12 for graphical definition. The y-integrated energy of each 

4 ( n , p n , a f ) ( Y )  sin (P, z+ 0%) 2 

W,(n ,B, ,a f ) (Y)CoS(PnZ+on>& 
r 2  
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FIGURE 12. Definition sketches for the dependence of superposed + p  oblique modes' roll 
perturbation effect on a, /I, and $, illustrated schematically in (a-c) for fundamental oblique modes: 
(a) ( 1 , l )  in-phase with rollup locations = x / 2 ) ;  and (c) (1,;) out- 
of-phase ($, = x/2) .  (d, e) Subharmonic oblique modes: ( d )  (& ;) in-phase = 0); and (e) (& 1 )  in- 
phase = 0). (f-h) Computed vortex lines in the initial tanh shear layer, perturbed by oblique 
modes which illustrate the effects of different oblique modes. The solid lines are centred around the 
eventual roll locations, and the dotted lines denote perturbed braid vortex lines. The vortex lines start 
at ,8z = 4 2  on a rake at the mid-plane ( y  = 0). Note that ( f )  (1 , l )  in-phase, (g) ( 1 ,  1) out-of-phase, 
and (h)  (i, ;) in-phase oblique modes excite the translative, CDI, and helical pairing secondary 
instabilities, respectively. 

= 0 ) ;  (b)  ( I ,  1) out-of-phase 
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(m, n)  mode can be expressed in a simple way using the orthogonality of the cos ( y )  and 
sin (y) expansions as 

K 

E,,(t) = i i (m,n ,k , t ) . i i* (m,n ,k ,~) ,  (13) 
k=O 

where ii is the vector of velocity Fourier coefficients, * denotes complex conjugation, 
and K is the truncation level for the y-expansions. Shear layer rollup and roll pairing 
are excited by 2D fundamental (1,O) and subharmonic (i, 0) linear inviscid eigenmodes, 
both initialized with same energy content (El,o(0) = E,i2,0(0) = E,?(O)) and phased to 
produce maximum (i.e. symmetric) pairing growth in all simulations. The times of 
rollup t ,  and the first pairing t,, are defined as the saturation times of the respective 
modes, i.e. when El, and attain their maximum values. 

In all simulations, three-dimensionality is introduced in the form of inviscid 
superposed & p  oblique instability modes of profile (1 l), represented by the second 
summation in (12), with an initial energy denoted E,,(O). The volume-integrated 3D 
energy upon evolution, E3D(t),  is given by the sum of all Em, with n =!= 0. To aid the 
reader, we define in figure 12(a-e) x-fundamental and x-subharmonic oblique modes 
and illustrate the influence of their x- and z-wavelengths and streamwise phase $ on the 
resulting roll configurations for several examples. For oblique modes corresponding to 
the three classes of 3D instability, these schematics are supported by figure 12(f-h), 
where perturbed vortex lines of (1 1) are shown centred around the eventual locations 
of the rolls (solid lines) and the braid (dotted lines). The perturbation effect of 
superposed oblique modes is simply a sinusoidal undulation of spanwise vortex lines 
along the span, with an amplitude (including direction) which varies sinusoidally in x. 
The (1,l) fundamental oblique mode in figure 12(f) is in-phase with rollup ($1 = 0) 
and leads to aligned roll undulations but braid vortex lines with an opposite undulation 
(Corcos & Lin 1984), as for the translative instability depicted schematically in figure 
1 (c). A fundamental oblique mode out-of-phase with rollup ($1 = 4 2 ) ;  figure 12(g) is 
reminiscent of the first stage of figure 1 ( d )  and eventually excites bulging instability 
(CDI) at a fundamental x-wavelength (Sandham & Reynolds 1991; RM). The (&+) 
subharmonic oblique mode in figure 12(h) is referred to as being in-phase with rollup 

= 0) and causes adjacent rolls to bend in opposite directions at a given z-station 
(Schoppa et al. 1992), as for the helical pairing instability (cf. figure la) .  As will be 
shown, ribs are produced neither by the CDI nor helical pairing braid perturbations in 
figures 12(g) and 12 (h) respectively; this is because these modes' exact antisymmetry 
about the braid centre causes viscous annihilation of perturbation vorticity here (with 
only these particular modes present). 

We find that the 3D evolution depends crucially on the particular oblique modes 
initialized (i.e. their a and /I) and also their initial amplitudes and phases relative to the 
2D modes; these are the only control parameters in this study. 

4. CDI excitation and linear evolution through pairing 
We now investigate the linear evolution of CDI with excitation by small-amplitude 

oblique modes, initiated in a parallel shear layer which undergoes unsteady 2D rollup 
and pairing. This is accomplished using the DNS initialization in 93 with small (i.e. 
effectively infinitesimal) amplitudes of the 3D modes relative to the 2D rollup and 
pairing modes, which evolve nonlinearly. We use this linear analysis to determine how 
pairing affects CDI growth and to develop energetic scenarios of linear CDI growth. 
In this way, we can compare CDI and translative instability growth in a realistic basic 
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FIGURE 13. Schematic of CDI, excitation by the combination of roll pairing and subharmonic oblique 
modes. Time evolution of this mode is illustrated as (a) opposed roll undulations at t ,  due to 
subharmonic oblique modes which (b)  grow between t ,  and t,, due to helical pairing-type instability 
and then (c )  are pressed together by roll pairing at t,, to produce CDI-type meridional flow cells 
within the composite roll. For the time (c ) ,  the meridional flow in section AA is shown in (d ) .  

flow and judiciously choose a CDI mode for further study in 9 5  at high amplitude (i.e. 
in the nonlinear regime) as a possible transition mechanism. 

4.1. CDI excitation from a parallel shear layer 

4.1.1. Fundamental excitation 
To study the behaviour of CDI in an unsteady 2D basic flow consisting of shear layer 

rollup and roll pairing, we must first determine the linear instability modes of a parallel 
shear layer which excite CDI. As discussed in 93, CDI-type evolution at a fundamental 
x-wavelength is excited after rollup by fundamental oblique modes placed out-of-phase 

= 4 2 )  with the 2D fundamental mode (Sandham & Reynolds 1991 ; RM), as in 
figure 12(g). Note that this oblique mode phasing did not produce ribs, owing to an 
exact antisymmetry of the perturbation about the braid centre. In the following, this 
mode is denoted x-fundamental CDI, i.e. CDI,. 

4.1.2. Subharmonic excitation 
We have found an additional route of CDI excitation, composed of 2D pairing and 

in-phase = 0) subharmonic oblique modes (figure 1 2 4 .  This process is shown 
schematically in figure 13, with the 3D perturbation amplitude exaggerated for clarity. 
At rollup, subharmonic oblique modes cause opposite spanwise undulations of 
neighbouring rolls (figure 13a), as for the helical pairing instability (cf. figure 1 a). 
Between rollup and pairing, these undulations amplify while, at the same time, pairs 
of rolls approach due to (nonlinear) 2D pairing growth (figure 136). Once the rolls 
begin to coalesce (figure 13 c), their opposite undulations create CDI-type meridional 
flow cells within the paired roll core, constituting the inception of x-subharmonic CDI, 
i.e. CDI,. 

To ensure that CDI-type evolution does in fact commence after pairing, we now 
evaluate CDI, in terms of characteristic features of the Stuart-vortex CDI eigenmode 
(32), namely oscillations of meridional flow and core size non-uniformity. The 
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FIGURE 14 a-c. For caption see facing page. 

meridional flow cell evolution for /?/as =. 0.5 CDI,, shown by vorticity vectors in z, ,~ 
(figures 14a-c) and the wj. distribution in the (j,z)-plane through the paired roll's 
centre (figure 14d-f), is quite similar to that of the CDI eigenmode. In particular, the 
meridional flow cells are characterized by like-signed w i  in z,,~ (cf. figures 14a-c, 
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FIGURE 14. Meridional flow cell evolution for linear perturbation evolution of the (i,;) in-phase 
subharmonic oblique mode pair in an unsteady 2D basic flow undergoing rollup and pairing (linear 
evolution of CDI, 0.5) shown at times (a, d )  t = 36, (b, e)  t = 39, and (c, f )  t = 42. The cell geometry 
is shown by (a-c) perturbation vorticity vectors in znI2 and (d-f) w: in the ( y ,  z)-plane passing through 
the paired roll centre. In (a), a close-up view is shown of the two layers of opposite-signed 
perturbation vorticity in the braid, which are weakened by viscous cross-diffusion. In (d-f), negative 
w: contours are shaded. 
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FIGURE 15. Evolution of meridional flow cell strength J 7’ d V and core size non-uniformity AH, for 
linear perturbation evolution of CDI, 0.5, illustrating their oscillatory growth as is the case for Stuart- 
vortex CDI. 

7c ,  e, g )  and a quadrupole structure in this (y,z)-plane (cf. figures 14d-f, 6c, e, g )  
which oscillate in strength and sign, reflecting time-periodic untwisting and subsequent 
retwisting of helical roll vortex lines (as shown in $2). Furthermore, during CDI, 
evolution, the meridional flow cell strength (j 7’ d V )  and core size variation (Ab,) of 
the paired roll oscillate out-of-phase and amplify (figure 15) because of their coupling, 
a characteristic of CDI (cf. figure 9a)  analysed in $2 ,  Finally, the post-pairing growth 
of volume-integrated 3D energy &(t) for this CDI, mode closely matches the 
theoretical growth rate for Stuart-vortex CDI (see figure 17). Note that the theoretical 
CDI growth for this comparison has been scaled according to the post-pairing vorticity 
thickness (i.e. the average 6 between t = 20 and 35). 

Therefore, the combination of 2D pairing and linear-amplitude helical pairing 
modes clearly excites CDI of the paired roll (i.e. CDI,). This has an important 
implication for helical pairing and roll lattice growth (figure 1 a), which are halted by 
pairing as shown schematically in figure 13. In fact, as will be shown in $ 5 ,  pairing 
prevents establishment of a roll lattice for even finite-amplitude helical pairing 
disturbances. Thus, helical pairing-type growth is limited to between rollup and 
pairing, after which CDI, initiates. 

For CDI,, opposite-signed perturbation vorticity appears in the braid (figure 14a-c) 
and is pressed together by the large shear strain rate here and thus viscously annihilated 
by cross-diffusion. As will be seen in $ 5 ,  this effect explains why significant ribs do not 
form for finite-amplitude CDI,. This particular braid vorticity distribution arises from 
the exact antisymmetry (in x) of the initial perturbation about the braid centre (figure 
12h). In the finite-amplitude case, we show in $5.3 that CDI, dynamics are generic with 
regard to this symmetry (i.e. CDI, is not reliant on artificial flow symmetries, often 
encountered in numerical simulations) ; simultaneous growth of CDI, in the roll core 
and ribs in the braid occurs in the asymmetric case. 

In the following, the instability results and analysis developed in $2 will be used 
extensively to guide our interpretation of CDI, and CDI, evolutions, which are seen to 
be quite consistent with Stuart-vortex CDI. 
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FIGURE 16. Inviscid growth rates of each secondary instability as a function of spanwise wavenumber 
/3. CDI,0.5 excitation by the linear evolution of a helical pairing mode through pairing is shown 
schematically by the heavy line. 

0 10 20 30 40 
t 

FIGURE 17. Comparison of volume-integrated 3D modal energies for linear perturbation evolution of 
CDI,, CDI,, and translative modes in an unsteady 2D basic flow through rollup and pairing. The 
unnormalized mode amplitudes on the right ordinate indicate that these modes are of linear 
amplitude. The Re+ co line for CDI, 1.0 represents the perturbation evolution obtained by zeroing 
the viscous term past t = 24. For comparison with post-pairing CDI,0.5, the theoretical Stuart- 
vortex CDI growth, scaled by the post-pairing vorticity thickness, is shown as a bold line. 

4.2. Comparison of CDI, and CDI, growth through pairing 
Having developed two scenarios of CDI excitation, we now compare their growth 
through the first pairing to determine which is linearly more unstable, before 
simulation in the nonlinear regime and also for comparison with translative growth. 
The theoretical inviscid growth rates of each secondary instability (of the Stuart vortex) 
are shown in figure 16 to guide the choice of /3. The process of CDI, excitation by 
helical pairing modes after pairing is represented schematically by a thick line with a 
doubling of P/a, to reflect a halving of the effective a, due to pairing. This illustrates 
that the most energetic CDI, mode after pairing is determined by a compromise 
between: (i) high helical pairing growth rate at small /3 between rollup and pairing, and 
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FIGURE 18. Influence of spanwise wavenumber /3 on the post-pairing meridional flow cell structure of 
linear perturbation evolution of CDI,, shown in (a, b)  for CDI,0.5 and in (c, d )  for CDI, 1.0; (a, c) 
show perturbation vorticity vectors in zK12 and (b, d)  show w: in the ( y ,  z)-plane through the paired 
roll centre. Note that the meridional flow of CDI, 0.5 after pairing has an essentially quadrupole 
structure, while CDI, 1.0 contains stronger outer cells of opposite rotation compared to the CDI, 0.5 
case. Negative contours are shaded. 

(ii) high CDI growth rate over a plateau of moderate ,B after pairing. In this regard, 
figure 16 suggests that the P/af = 0.5 CDI, mode (abbreviated hereinafter as CDI, 0.5) 
will experience rapid growth both before and after pairing. 

4.2.1. Evolution through rollup 
In figure 17, we compare the linear evolution of EBD(t) for CDI,0.5 with the 

P/af = 0.5 and 1.0 CDI, modes, abbreviated hereinafter as CDI, 0.5 and CDI, 1.0 
respectively. Interestingly, the most rapid growth of these ' secondary' modes occurs 
during rollup (before t , )  as oblique mode instabilities, which persist even for a strongly 
non-parallel shear layer. In general, for a given non-dimensional growth rate 
CT: = CT, S/U,  the observed growth rate c, is lowered by rollup and successive pairings, 
which increase the mixing layer vorticity thickness 6. Therefore, rollup and pairing 
alter CT, by (i) causing changes in stability characteristics and C$ and (ii) approximately 
doubling 6, which halves CT,. The combination of (i) and (ii) is responsible for the 
obvious growth rate changes near t, and t,, for each mode in figure 17. Between t ,  and 
tpl ,  CDI,0.5 grows noticeably faster as a helical pairing-type mode than either CDI, 
mode, which is consistent with the theoretical growth rates of these modes in figure 16. 

4.2.2. Influence of pairing 
After pairing, CDI, 0.5 and CDI, 0.5 attain similar oscillatory exponential growth 

(figure 17) and the same qualitative perturbation structure. The post-pairing CDZ, 0.5 
meridional flow cell structure consists of: (i) dominant negative 0: in z,,~ (figure 18a) 
and (ii) quadrupole 0:: in the ( y ,  z)-meridional plane (figure 18b), both of which reflect 
twisting of roll vortex lines, as for CDI, 0.5 (figure 14) and the Stuart CDI eigenmode. 
Thus, the CDI,0.5 mode quickly reorganizes after pairing to regain the CDI 
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FIGURE 19. Perturbation energy density e,, as a function of x for linear perturbation evolution of 
Trans 1.0 and CDI,0.5 at t = 36 ( t p l  - 20). Note that the e,, for CD1,O.S is concentrated within the 
roll where it exceeds that of Trans 1.0. 

perturbation structure and corresponding energy growth within the paired roll. Note 
that although CD1,O.S and CDI,0.5 excite essentially the same CDI mode after 
pairing, CDI, 0.5 remains more energetic past t,, due to its more rapid, helical pairing- 
type growth between t, and t,, (figure 17). 

In contrast to CDI, 0.5, growth of CDI, 1.0 is halted by pairing; some of this 
suppression is due to viscous effects (recall figure 11 b), as shown by the energy increase 
observed by effectively switching off the viscous term at t = 24 (figure 17). In addition, 
pairing has a qualitatively different influence on the CDI, 0.5 and CDI, 1.0 meridional 
flow cell structures. For instance, near a time of peak meridional flow strength, the 
perturbation vorticity vectors in z,,~ for CDI, 1.0 (Figure 18c) show an inner core 
region dominated by positive wh surrounded by an outer region dominated by negative 
w i .  As a consequence, the (y,z)-distribution of w\ through the roll centre (figure 18d) 
(illustrating the meridional flow) consists of an inner core with the customary CDI 
quadrupole structure, but surrounded by an outer quadrupole of opposite sign. 
Although the net meridional flow cell strength 7’ d Y (i.e. volume-integrated wh/r 
between zo and z,) is positive at this time, indicating stronger inner cells, the opposite- 
signed outer cells are nevertheless strong and counteract the inner cells’ near-axis 
induction. This octupole meridional flow cell structure for CDI, 1.0 differs from the 
Stuart CDI eigenmode and produces little or no additional 3D energy growth (figure 
17). This is in contrast to the CDI, 0.5 meridional flow, which reorganizes after pairing 
to attain cells dominated by like-signed wi (figure 18a). 

4.2.3. Implications of selectiue stabilization by pairing 
We have found that this trend of continual CDI, growth after pairing at smaller p, 

but suppression at larger /3 holds over the range p/a f  = 0.25-2.0 as well. This has two 
important implications for long-term CDI growth. First, the broadband nature of CDI 
(figure 116) suggests that it could conceivably directly inject 3D energy into small 
scales ; however, this possibility is eliminated by pairing, which stabilizes growth of 
larger p CDI,. Second, a scenario of sustained CDI, growth through successive pairings 
is no longer plausible. For instance, when the CDI,0.5 mode undergoes a second 
pairing, it will have the same aspect ratio as CDI, 1 .O after the first pairing and thus will 
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likely suffer similar neutralization. Therefore, in general we expect the range of 
unstable CDI modes (excited either as CDI, or CDI,) to have P which decrease with 
additional pairings. 

4.2.4. Comparison with translative growth 

To determine if CDI can keep pace with the 3D energy growth of ribs and the 
translative instability, we also show in figure 17 E3,(t) for the P/af = 1.0 translative 
mode (abbreviated hereinafter as Trans 1.0), approximately the most unstable /3 for 
translative-type disturbances after pairing (RM). Interestingly, although the translative 
instability has nearly twice the theoretical growth rate of CDI (over the P-range in 
figure 16), CDI,0.5 produces comparable 3D energy after pairing. This is due in part 
to the CDI, excitation scenario, in which subharmonic oblique modes grow due to 
helical pairing-type instability as rapidly as Trans 1.0 between t, and t,. In addition, 
since the measured Trans 1.0 growth rate is in fact approximately twice the average 
CDI,0.5 growth rate after pairing (figure 17), the resulting E,, difference is relatively 
small on this timescale. 

In comparing the E3, of CDI,0.5 and Trans 1.0, one should recall that the CDI 
eigenmode is localized within the roll, while the translative instability contains 
perturbations in both the braid and roll. To quantify this effect, we consider the 3D 
energy density 

(14) 

where the overbars denote spanwise averaging. The e,, distributions at t = 36 for 
Trans 1 .O and CDI, 0.5 (figure 19) illustrate that although the E,, of Trans 1 .O is nearly 
twice as high at this time (figure 17), the energy density of CDI,0.5 mode is 
approximately 2 times higher within the paired roll core. Note that although e,, is also 
concentrated within the roll core for Trans 1 .O immediately after pairing, it quickly 
becomes uniform as the rib perturbation energy in the braid grows, as for the rib- 
excitation mode studied by MR. Therefore, for a given E,,, the roll perturbation 
intensity becomes disproportionately higher for CDI, 0.5 after pairing. In the light of 
experimental evidence that transition originates within rolls, this property of CDI takes 
on added significance. 

In summary, we have found that when excited by subharmonic oblique modes like 
CDI, 0.5, rapid linear CDI growth can occur through rollup and pairing and keep pace 
with the most unstable translative mode. In $ 5 ,  we address two issues regarding 
nonlinear CDI evolution which crucially determine its dynamical significance : (i) 
whether CDI, 0.5 can generate transition from moderate initial 3D amplitudes and (ii) 
the influence of finite-amplitude Trans 1 .O on the nonlinear evolution of CDI, 0.5. 

e3,(x, t )  = - (ui ui - ci ci) dy dz, 2 ss 

5. Nonlinear CDI evolution and transition 
We now consider the nonlinear evolution of CDI through the first pairing, with 

CDI,0.5 excitation as in 54, but now with comparable 2D and 3D initial disturbance 
levels. Characteristics of nonlinear CDI are studied with particular attention to the 
generation of small-scale vorticity and the initiation of transition. We also consider the 
influence of asymmetry and ribs (i.e. a finite-amplitude translative mode) on these 
nonlinear CDI features to evaluate their genericity. 
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( a )  t=21 (b) t = 24 
\? 

(c) t=27 

( d )  t=30 (e) t = 33 ( f )  t=36 

FIGURE 21. Evolution of the w,-distribution in z, and zo for CD1,O.S at times (a) t = 21, (b) t = 24, 
(c)  t = 27, ( d )  t = 30, (e )  r = 33, and ( f )  t = 36. The contour increment is 0.252, starting with this 
value, with the peak values indicated. Note the low value within the bubble at r = 36, in z,. 

5.1. Nonlinear CDI, 0.5 evolution 
In this subsection, we analyse a single CDI mode - CDI, 0.5 initialized with 
E3,(0) = 0.5E2,(0) - illustrating key nonlinear features which we have found to be 
generic to other CDI modes as well (e.g. CDI, 0.25, CDI, 0.5). The choice of E3,(0) is 
motivated by our view that the initial 2D and 3D amplitudes should be comparable for 
a single 3D mode evolution to represent a dynamical building block of unforced 
experimental flows. 

5.1.1. Vorticity and vortex line evolution 
In figure 20, we show two views of (i) constant-lo[ vorticity surfaces between z, and zo 
and (ii) two bundles of vortex lines between z ,  and zZn, passing through the two lo( 
peaks in zo. The locations of these distinct IwI peaks are tracked in time and the 
corresponding vortex line bundles are distinguished by their line thickness (heavy and 
light for the downstream and upstream rolls respectively). Note that these vortex lines 
cannot be tracked in time as material lines in viscous flows. The initial oblique mode 
configuration is that of figure 12(d, h), and the evolution through pairing is like that 
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FIGURE 22. Schematic of low-enstrophy bubble formation near z, for CDI,0.5 at late times, due to 
(a) strong compression and radial ejection near z,, causing (b) a bubble of low 101 to form and ( c )  to 
spread radially, producing a thin sheath of high 101. 

illustrated schematically in figure 13. The Iwl-field at t = 18 illustrates the geometry of 
the pairing rolls, which have been bent out-of-phase by a helical pairing-type 
instability. As will be seen, the meridional flow induced by these bent portions of the 
rolls (figure 13 d) constitutes the excitation of finite-amplitude core dynamics by 
CDI, 0.5. In the early stages of evolution (figure 20a-d), the rolls are simply rotating 
around each other as distinct vortices, with a planar 3D deformation of roll vortex 
lines. However, as evolution continues, a compact paired roll first appears near 
z,(t = 30), followed by rapid expansion and formation of a low-lo1 bubble within the 
paired roll core ( t  = 33). At the same time, the roll vortex lines first develop a strong 
helical twist ( t  = 30) and then sharp outward flaring near the bubble in z,. This 
evolution illustrates that the CDI, 0.5 mode excited by this initially simply pairing 
configuration attains a high nonlinear amplitude, producing a strong 3D internal roll 
structure. Note the lack of significant rib vortices at all times in figure 20; this is due 
to antisymmetry of the initial perturbation about the braid centre, as discussed in 54.1. 

The evolution of spanwise vorticity w, in the planes z ,  and z ,  shown in figure 21 
provides a clear perception of the ‘paired’ roll’s core size oscillation. To illustrate the 
strengthening and weakening of w, in these planes, the same contour increment (0.252,) 
is used in all panels. In contrast to 2D pairing dynamics, the initially coalesced roll w, 
in z ,  ( t  = 21) weakens and ‘unpairs’ by t = 27, due to the compression and outward 
ejection of roll fluid by the meridional flow cells. Between t = 30 and 36, the cells 
reverse sign, subsequently causing the rolls to recoalesce and intensify in z ,  to form a 
vortex sheet which undergoes secondary rollup by Kelvin-Helmholtz instability, 
reaching (by t = 36) a peak o, of 4.452,. 

In z,, the rolls have slipped past each other without pairing by t = 21 (figure 21 a). 
Subsequently, the rolls coalesce ( t  = 24), forming essentially a vortex sheet ( t  = 27), 
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t =  18 

Yt Z 

t = 3 3  

w-3 
FIGURE 23. Meridional flow cell evolution for CDI,0.5, illustrated by w, in the (y,z)-plane passing 
through the paired roll centre at times (a) t = 18, (b )  t = 24, ( c )  t = 27, (d )  t = 30, and (e)  t = 33. 
Negative contours are shaded and the contour increment is 0.152, in (a-c) and 0.29, in (d,e). 
Meridional velocity vectors shown in (d)  illustrate the strong radial ejection of roll fluid and near-axis 
compression near z,  due to the meridional flow cells. 
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which is strengthened by the extensional strain rate induced by the meridional flow 
cells. After this sheet rolls up between t = 27 and 30 into a single vortex in z ,  (by 
Kelvin-Helmholtz instability), the cells reverse, causing the roll w, to weaken. The 
compressive flow in this plane is so strong that a shell of w, is formed around a bubble 
of nearly irrotational fluid ( t  > 33) .  Expansion of this shell continues, forming an 
elongated and very thin sheath of w,(t = 36), somewhat similar to the ‘hoop’ observed 
by RM in the absence of pairing. 

5.1.2. Roll fluid ejection 
The mechanism of sheath and bubble formation near z,, illustrated schematically in 

figure 22, consists of a strong CDI-induced saddle flow centred at z, which causes both 
compression and outward ejection of near-axis 0,. It can be shown that w, subject to 
continual compression in z, decays exponentially; the resulting low-enstrophy bubble 
appears first near the roll centre (figure 22 b)  and then enlarges radially (figure 22 c). A 
subtle feature of this mechanism shown in figure 22(c) is that at a sufficiently large 
radius, the meridional flow cells induce a strain rate opposite to that near the axis (see 
figure 23d). Thus, once w, is radially ejected sufficiently far, it begins to amplify by 
stretching, thereby creating a fine-scale high-w, sheath, as in figure 21 ( f ) .  

This scenario is supported by the meridional flow cell evolution, shown by: (i) the 
w, distribution in the (y,z)-plane passing through the roll centre (figure 23) and (ii) 
vorticity vectors in z,,~ (figure 24). Up until t = 30, the meridional flow cells in figure 
23 exhibit smooth contours which oscillate in strength and sign much like a linear CDI 
mode. A comparison of the frames of figure 24 for t = 18-27 with the views in figure 
20 reveals that until t = 27, the meridional flow oscillation is due to the global rotation 
of two rolls with a planar deformation, reflected by the aligned vorticity vectors within 
both rolls in figure 24(a-c). Nevertheless, by t = 30, the vortex lines become more 
helically twisted in this plane (as opposed to planar), as reflected by the appearance of 
wo all along the azimuth (figure 24). The late-time meridional flow cell structure is quite 
similar to that of the linear CDI eigenmode and produces a strong spanwise flow within 
the roll because of its nonlinear amplitude. As evolution continues, large gradients 
appear within the meridional flow cells near z, (figure 23e), an important nonlinear 
effect discussed in the following. Note that the vorticity in adjacent braids is of opposite 
sign (e.g. figure 24e) and even weaker than roll w, and w,, both in contrast to the typical 
ribroll scenario. 

5.1.3. Nonlinear CDI efSects 

These non-sinusoidal z-gradients within the meridional flow cells have consequences 
for the evolution of cell strength (s 7 d V )  and core size non-uniformity (A6,) as well. 
As shown in figure 25, oscillatory growth of s 7 dV is characterized by broad positive 
or negative plateaus separated by times of rapid change, in contrast to the amplifying 
sinusoidal variation for linear CDI. Accordingly, Abu changes sharply as a positive or 
negative impulse function, reflecting rapid changes in the roll w, distribution near zo 
and z,. In addition, the sharp peaks in Adw are composed primarily of core size 
oscillation in either zo and z,, rather than the proportionate simultaneous contraction 
in one symmetry plane and expansion in the other for linear CDI. This is evident from 
figure 21, where rapid core contraction in one plane is accompanied by little change in 
core size in the other (figures 21 b-c, e-f) at the times immediately preceding the peaks 
in A0, ( t  - 27,36). 

A simple explanation for these observed effects is revealed by the 7 transport 
equation (3). Recall that for linear evolution, the z-component of the 7 advection term 
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FIGURE 24. Meridional flow cell structure in z,,~ for CDI,0.5, shown as vorticity vectors at times (a) 
t = 18, (b) t = 24, (c) t = 27, (d) t = 30, and (e)  t = 33, corresponding to figures 23(a-e). Note the 
development of like-signed wg in (d, e), also characteristic of linear CDI. Figures 23(d) and 24(d) 
together indicate that the roll's internal flow is highly 3D. 
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FIGURE 25. Evolution of meridional flow cell strength J '1 dV and core size non-uniformity Abm for 
finite-amplitude CDI, 0.5. Note that the relationship between these quantities (equation (5))  holds 
even in the nonlinear regime, where evolutions of J '1 d V and AOu are non-sinusoidal. 
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FIGURE 26. Development of (a)  peak values of w, in zo and zn and domain peak of opposite-to-mean 
+w,  and (6)  spanwise velocity at the paired roll centre in z,,~ for CD1,O.S. Observe that u, in (6) 
eventually exceeds the free-stream velocity. 
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FIGURE 27. Onset of transition for CDI, 0.5, reflected by roll vortex lines in (a, b) and IwI isosurface 
overlaid with cross-hatched surfaces of opposite-to-mean + w, in (c, d) .  The initial 3D perturbation 
energy is E,,(O) = 0.5E2,(0) in (a, c) and EJO) = E,,(O) in (b, d) .  The times are t = 37.5 for (a, c) and 
t = 39 for (b, d). The vortex lines in (a) are begun as a rake from nine dots on a square centred around 
the peak IwJ in z,,~ and those in (b) are centred around the two IwI peaks in z,,. The isosurface value 
of jw/ is 1.552, and that of SO, is -0.2552, in (c) and -52, in (d) .  
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(u, &,I/&) was negligible since both u, and q were perturbation quantities. However, for 
the nonlinear case under consideration, both are finite amplitude, so that q can 
transport itself in z by self-induction. Consequently, the meridional flow induced by 7 
causes it to pile up near z ,  in figure 23(e). This compacts 7 into a smaller volume, 
thereby increasing its induced meridional flow locally, a nonlinear effect which is 
responsible for the local behaviour observed earlier: (i) strong local ejection of roll fluid 
during sheath formation near z, and (ii) impulsive changes in A0, producing square 
wave-type 7 d V evolution by rapid local twisting and untwisting of vortex lines (the 
7 generation term on the right-hand side of (3)).  

After t - 36, such strong core dynamics subside; the vortex sheath in z ,  does not 
contract and the compact roll in z, subsequently expands only slightly to form a small 
low-lwl bubble. This lack of further strong large-scale core dynamics is apparently due 
to local qualitative changes in the roll vortex line geometry (discussed in the following), 
distinct from the simple helical twisting and untwisting observed for early CDI, 0.5 
evolution. 

5.2. Onset of transition 

5.2.1. Vorticity and local velocity ampllfication 
With an understanding of nonlinear-amplitude CDI, 0.5 evolution, we now evaluate 

the amplitudes of core oscillation and meridional flow attained in terms of local peak 
values of vorticity and velocity. As shown in figure 26(a),  the peaks of -w, (in the 
direction of the mean) in z ,  and z, evolve in response to vortex core expansion and 
contraction until t - 30. For instance, at t - 27, the roll core is diffuse in z ,  but 
concentrated in z ,  (see figure 21 c), reflected in figure 26(a) by a -w ,  peak in z ,  which 
is approximately 3.5 times as large as Q,, the peak -wz of the original parallel shear 
layer (note that in a 2D flow, no amplification of 52, can occur). By t - 36, the peak 
- w ,  in z ,  reaches 4.452, as the core contracts in this plane (figure 21 d-f). However, 
a corresponding decrease in peak -w ,  in z, is halted at t - 30 by vortex sheath 
formation, which moves the - w ,  peak spatially from the vortex centre to the core 
periphery (figure 21 d ) ,  where further amplification by stretching to a value of 552, 
occurs by t - 38 (not shown). Therefore, in contrast to linear CDI evolution, where the 
- w, peaks in z ,  and z ,  oscillate 180" out-of-phase, the formation of a vortex sheath in 
z, causes large peak values (exceeding 352,) to occur simultaneously in both planes 
between t - 34 and 37. 

Intense core dynamics are also reflected in figure 26(b) by the peak meridional flow 
velocity u, at the vortex centre in z,,~. This spanwise flow within the roll oscillates 
according to the meridional flow strength and attains very large peak values, which in 
fact exceed the free stream U, as indicated in the figure. With regard to the meridional 
flow distribution in figure 23(d) ,  it is now clear why such strong near-axis w, 
compression and outward ejection of roll core fluid (responsible for vortex sheath 
formation) occur near z ,  between t - 30 and 33. Along with the observed factor 5 local 
amplification of w,, this illustrates that CDI, 0.5 can produce strong local three- 
dimensionality from a moderate-amplitude initial 3 D  disturbance. 

5.2.2. Internal intermittency and transition 
Although these local measures reflect the generation of intense small-scale vorticity, 

their large values alone do not necessarily imply roll vorticity's internal intermittency 
- reflected by a granular vorticity distribution and characteristic of fully turbulent 
flows. For instance, the peak - w, in z,, at t - 36 (equal to 4.452,) results from a smaller- 
scale yet well-organized roll near this plane (figure 21f ) .  In this regard, the development 
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FIGURE 28. Development of internal intermittency, illustrated by the W ,  distribution in an (x, y)-plane 
near z, for CDI,0.5. The initial amplitudes are: E,,(O) = OSE,,(O) at (a) t = 33 and (b) t = 37.5 and 
(c)  E,,(o) = E,,(O) at t = 39. Opposite-to-mean +w, is shaded and the contour increment for -0, 
is 0.252,. The w, values range from - 2.452, to 1.852, in (b) and from - 3.852, to 2.552, in (c). 

of strong opposite-to-mean +w, is a useful indicator (MR; Comte, Lesieur & 
Lamballais 1992) in that it illustrates a qualitative change in the vortex line geometry 
- from vortex lines which all run in the -z-direction before transition to the 
appearance of folded vortex lines with S-shaped kinks which locally run opposite to the 
mean vorticity direction (i.e. +z).  For CDI,0.5, figure 26(a) demonstrates that the 
development of significant + w ,  begins around t = 31 and eventually reaches a 
maximum of -352, at t - 37. 

To determine where this opposite-signed w, develops for CDI, 0.5, we show in figure 
27(a) a bundle of vortex lines centred in the roll core in zri2 along with the 
corresponding isosurface plot in figure 27(c) of IwI (greyscale) overlaid by +o, 
(crosshatch) at t = 37.5 (the time of maximum +w,). Viewed together, figures 27(a), 
27 (c) illustrate that + w, is localized around the vortex sheath near z ,  and results from 
folded vortex lines which flare outward intensely here. It is interesting to note that 
between zo and z , / ~ ,  the roll’s vortex line and (wl-distributions are those of a laminar, 
albeit strongly 3D, flow. Contour plots of w, near z ,  (in the z-plane containing the 
maximum +w,) at t = 33 and 37.5 in figures 28(a) and 28(b) respectively clearly 
illustrate the internal intermittency resulting from this + w, development. Specifically, 
layers of fw, first appear within the roll ( t  = 33),  followed by development of 
intermingled regions of high-valued fine-scale - w, and + w, within the roll ( t  = 37.5). 
This suggests that strong core dynamics have initiated localized transition near the 
vortex sheath. 

To ensure that this is in fact a turbulent transition, we doubled the initial 3D energy 
of CDI,0.5 to &,(O) = E2,(0). In this case, core dynamics similar to those discussed 
in $5.1 occur, and the locally entangled vortex lines and fine-scale vorticity in figures 
27 (b), 27 (d) indicate transition near 2,. The w, distribution near z ,  in figure 28 (c) shows 
strong internal intermittency and ensures that the fine scales in figure 27(d) are not 
numerical noise. Therefore, we will continue to analyse the more tractable transition 
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FIGURE 29. Evidence of vortex line folding and reconnection at t = 37.5 near z, for CDI,0.5 with 
E,,(O) = 0.5E2,(0). The closed vortex line loops (B) start from regions of +w, in z,, while the folded 
vortex line (A) starts from the peak + w ,  in figure 28(b) .  

dynamics of E,, = 0.5E2, for CDI,0.5 with the knowledge that a relatively small 
increase in the initial 3D disturbance amplitude will cause a more distinct transition. 

5.2.3. Internal intermittency generation mechanism 
The vortex line patterns responsible for + w, regions in figure 28 (b) and also in z ,  are 

shown in figure 29 by vortex lines starting at locations of peak + w ,  in both planes. 
Owing to symmetry in z,, + w, here is associated with closed vortex line loops (marked 
B), while the + w, in figure 28 (b) is due to S-shaped folding of vortex lines (marked A), 
also a prominent feature in figure 27(a). The key to both vortex line kinking and loop 
formation is the meridional flow pattern combined with its strong induced radial 
ejection near z, at late times. As illustrated schematically in figure 30(a), the meridional 
flow cells induce u, of opposite sign in the inner and outer core regions, demarcated by 
a solid line. The vortex line sketched in figure 30(a) is a typical twisted inner core vortex 
line at t - 30 (see figure 20e), when the meridional flow is nearly at its strongest. The 
outward radial velocity near z, causes a portion of this line to be ejected into the outer 
core region, as in figure 30(b). Note that the inviscid case is considered in figure 30(a-c) 
in order to track the evolution of a tagged vortex line for illustrative purposes. As 
additional ejection occurs, this line becomes part of the vortex sheath in z,, and its legs 
are pressed together in the inner core region but stretched apart in the outer core to 
form an S-shaped kink with + w, (figure 30c). This stretching of sheath vortex lines in 
the outer core is responsible for the amplification of -w ,  past t - 30 in figure 26. If the 
legs of a vortex filament surrounding this line are eventually pressed together in the 
inner core, viscous reconnection (Melander & Hussain 1988; Kida & Takaoka 1994) 
will form a closed loop, as diagrammed in figure 30(d). Note that closed vortex line 
loops passing through z ,  can form only by this pinching-off since w, = wy = 0 in this 
plane because of symmetry, so that + w ,  can enter z, only through the action of 
viscosity (i.e. reconnection). Thus, both characteristic vortex line patterns in figure 29 
responsible for internal intermittency arise as a consequence of the same mechanism, 
which causes vortex line kinking at an earlier stage (figure 30c) and reconnection to 
form several small-scale closed vortex line loops at a later stage (figure 30d). It is 
interesting to recall that vortex loops were experimentally visualized to be pinched off 
and ejected outward in an axisymmetric mixing layer and suggested to be a mechanism 
of entrainment by Clark (1979) (see also Hussain & Clark 1981). 

A subtle feature of the mechanism described by figure 30 is the requirement that 
strongly ejected vortex lines and a strong unreversed meridional flow coexist 
simultaneously. Recall that for linear CDI, when the core expansion is nearly at its 
maximum, the meridional flow reverses sign as a consequence of the coupling and thus 
approximately 90" temporal phase shift of core size and meridional flow oscillations. 
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FIGURE 30. Schematic mechanism of vortex line folding and subsequent reconnection due to strong 
meridional flow at late times for CDI,0.5. In (b-d), only the lower half of the roll in (a) is shown. 

For the nonlinear case, the meridional flow causes substantial ejection near z,  by r - 33 
(figure 21 e),  with a strong, as yet unreversed, meridional flow still present (figure 23e). 
This is the key aspect of late-time + w ,  generation by CDI, that is captured by a lack 
of meridional flow reversal in figure 30. In fact, the maximum growth of + w ,  occurs 
near t N 33 (figure 26a), further confirming this scenario. Nevertheless, as outlined, 
this mechanism of intermittency generation assumes symmetry about z,, an artifact 
that will be further discussed in 55.3. 

5.2.4. Distinction between small-scale transition and intermittency 
For CDI, 0.5 with E3D = 0.5E2,, the volume-integrated energy and dissipation 

spectra increase by as much as 3 orders of magnitude at higher wavenumbers (lkl - 50) 
between t = 9 and 37.5, as illustrated in figure 31 (a).  The spectrum at t = 9 is relatively 
full, partly because the mean velocity U ( y )  is included, which contains some high- 
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FIGURE 31. Development of (a)  energy and (b) dissipation spectra for CDI,0.5 with 
E,,(O) = 0.5E2,(0). The levelling of slope of both spectra at high wavenumbers is due to enhanced 
energy cascade and (small-scale) dissipation during small-scale transition. 

wavenumber energy even at early times. In addition, vortex rollup itself (f, - 10) acts 
to partially fill the spectrum through the formation of spiral layers of predominantly 
spanwise vorticity (e.g. figure 2b). Note that the two-decade fall-off of the dissipation 
spectra indicates adequate numerical resolution. An interesting aspect of the spectral 
evolution is the fact that most of the small-scale generation occurs by t - 33,  even 
though little intermittency (i.e. spatial patchiness of vorticity) has been generated by 
this time (figure ZSa), with a relatively small +w,  peak of -Qo. This indicates that 
spectral growth of high wavenumbers is not accompanied by internal intermittency. 
That is, sharp vorticity gradients reflected at high wavenumbers do not necessarily 
imply the presence of a granular 3D vorticity distribution, characteristic of 
intermittency. Therefore, in this case, cascade enhancement is not caused by the 
appearance of roll intermittency (as in figures 28b, c), but rather by strong core 
dynamics. Once small-scale vorticity is generated, the vortex line geometry responsible 
is quickly disrupted by locally intense vorticity, producing internal intermittency but 
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FIGURE 32. Early disruption of the CD1,O.S quadrupole meridional flow cell structure (see figure 23). 
This is due to the simultaneous evolution of a finite-amplitude Trans 1.0 mode, shown by w, in a 
(y,z)-plane through the paired roll at t = 18. Negative contours are shaded, and the contour 
increment is 0.28,. The heavy line demarcates the rib vorticity trapped between pairing rolls. The 
straight lines denote z,  and the mixing layer centre ( y  = 0) and illustrate that Trans 1.0 breaks both 
the z-reflection symmetry and reflection symmetry about the vortex axis encountered for isolated 
CD1,O.S. 

only slight additional small-scale energy (cf. t = 33 and t = 37.5 spectra in figure 31 a). 
In this sense, internal intermittency appears to be more a consequence of, and not 
synonymous with, nor a cause of, growth of high wavenumbers. 

To summarize, accelerated small-scale and internal intermittency generation indicate 
the onset of localized transition between the first and second pairings ( tp2  - 45) due to 
nonlinear evolution of a single CDI, 0.5, mode, without either pairing suppression or 
artificially high initial 3D disturbance levels. In fact, localized azimuthal transition 
during pairing of vortices in the near field of an elliptic jet (Husain & Hussain 1991) 
appears to be an example of CDI-induced transition. 

5.3. Eflect of ribs on CDI,O.S 
Since ribs are a prominent experimentally observed feature of shear layers (Hussain 
1983), we now consider their influence on nonlinear CDI,0.5, which up to this point 
has been studied in isolation. In particular, the simultaneous evolution (through 
pairing) of CDI, and the translative instability will address three important issues: (i) 
whether the flow symmetries of sole CDI, are crucial to its evolution and the transition 
which results, (ii) how strongly CDI, and the translative instability compete, and (iii) 
the effect of this competition on transition. It is important to note that the competition 
addressed here poses a strong challenge to CDI growth since CDI, excitation itself is 
disrupted by translative-induced roll undulations in addition to the ribs trapped within 
the core of the paired roll. 

To excite ribs, we initialize Trans 1 .O with the same energy as that of CDI, 0.5, i.e. 
E3D = 0.5E2,. By choosing a spanwise phase shift of 8, -O1/? = 4 4  in (12) between the 
CDI, and translative oblique oblique modes, we obtain equivalently the simultaneous 
evolution of O,-O, , ,  = 0 and O , - O , / ,  = n/2 phasings. As a consequence, this breaks 
both CD1,’s z-reflection symmetry evident in figure 23, which causes w, and oy to be 
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FIGURE 33. Comparison of (a) vortex lines with (b) a superposition of fundamental and subharmonic 
spanwise sine waves. The vortex lines are begun near the peak 101 in z,, at t = 18 for simul- 
taneous CD1,O.S and Trans 1.0 evolution. In (b), two functions are shown; the right one is 
-O.Scos(~z-7c/4)+cos(~z/2) and the left one is -O.Scos(~z-~/4)-cos(~z/2).  

zero in z ,  and z,, along with its reflection symmetry about the vortex axis in all z-planes, 
evident in figures 2 1, 23. 

5.3.1. Emergence of CDI-dominated evolution 
As illustrated in figure 32, the ribs trapped between pairing rolls are prominent in the 

paired core. This serves as a major disruption of the quadrupole meridional flow 
structure of CDI, 0.5 (cf. figure 23 a). In addition, the roll undulations induced by the 
translative mode (see figure 1 c) disrupt the CDI, excitation scenario diagrammed in 
figure13 - pairing of rolls with opposite undulations produced by the helical pairing 
instability. This is shown in figure 33 (a)  by vortex lines near the peak w, of both pairing 
rolls in z,, which exhibit strong P/af = 1.0 content due to Trans 1.0. Interestingly, a 
similar pattern appears in figure 33 (b) by simply superposing p/a f  = 0.5, 1 .O sine waves 
with a phase shift of 8, - d l j Z  = n/4 as well as the undulation patterns of the translative 
and helical pairing modes in figure 1 (a, c). This resemblance indicates that the 
translative and helical pairing instabilities are growing side by side between rollup and 
pairing, with little disruption of either mode. Nevertheless, growth of the translative 
component of roll undulation has an adverse effect on CDI, excitation after pairing, 
in that the meridional flow cell structure outside the trapped ribs in figure 32 now 
contains a strong P/af = 1 .O component (four cells in the y ,  z-plane), in contrast to the 
simple quadrupole meridional flow cell structure for CDI, 0.5. 

Based on the flow structure at pairing, one might expect a fatal disruption of 
CDI, 0.5 by trapped ribs and translative roll undulation. However, figure 34 illustrates 
that a quadrupole-like meridional flow cell structure quickly emerges by f = 31.5 
because of nonlinear CDI,0.5 growth. In fact, figure 35 clearly illustrates that 
CDI, 0.5-induced roll oscillation dominates the evolution of roll vorticity. For 
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FIGURE 34. Recovery of a quadrupole meridional flow cell structure by t = 31.5 for simultaneous 
CDI, 0.5 and Trans 1 .O evolution, reflected by w, in a ( y ,  z)-plane through the paired roll. Negative 
contours are shaded, and the contour increment is 0.3Q0. 

instance, the roll w, distribution at t = 27 is strongly non-uniform along the span 
(figure 35a), quite analogous to the pure CDI,0.5 case (figure 21c). Because of the 
meridional vorticity in figure 34, the roll non-uniformity reverses due to CDI dynamics 
by t = 36 (figure 35b), with an organized laminar vortex in zo and a sheath of w, 
surrounding regions of strong + w ,  in z,. This is very similar to isolated CDI,0.5, 
although the absence of symmetry results in stronger fw, in z, (cf. figure 21f). In 
contrast, the roll w, distribution in these planes for Trans 1 .O without CDI, 0.5 (figure 
35c) is very different and well-organized in both planes. Therefore, at moderate 3D 
amplitudes, CDI,0.5 grows alongside Trans 1.0, with the roll dominated by CDI,0.5 
and ribs excited by Trans 1.0 in the braid. We emphasize that this analysis of the 
vorticity field evolution unmistakably shows that the achievement of high nonlinear 
CDI, 0.5 amplitudes is not reliant upon special flow symmetries or isolated evolution. 

5.3.2. Eflect on transition 
We now consider the effect of Trans 1.0 mode on the small-scale transition due to 

CDI, 0.5 identified in $5.2. In figure 36, the oscillation and amplification of w, in z,, and 
z, resulting from CDI, 0.5 still occurs with Trans 1 .O present, although the peak w, in 
these planes is higher with ribs present until t - 27 owing to amplification of ‘cup’ w, 
within the roll by rib induction (RM). Nevertheless, once CDI,0.5 emerges at high 
amplitude, it dominates the peak w, in these planes (also the domain peak). Significant 
+ w, also appears for CDI, 0.5, both with and without Trans 1 .O (figure 36). Without 
CDI, 0.5, insignificant + w, is generated by Trans 1 .O, signifying that translative-based 
transition does not occur between the first and second pairings for this initial 3D 
disturbance level. The small-scale generation by CDI, 0.5 is similar with or without 
Trans 1 .O (figure 37), which by itself generates an order-of-magnitude less small-scale 
energy. 

Figure 38 illustrates that CDI, 0.5 clearly dominates transition initiation when 
moderate-strength ribs are present. Roll vortex lines begun near the peak -0, in zp ,  
and vorticity surfaces for Trans 1.0 with (figure 38a, c) and without (figure 38 b, d )  
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FIGURE 35. Distributions of o, in z,, and z ,  for simultaneous evolution of CD1,O.S and Trans 1.0 at 
times (a) t = 27 and (b) t = 36, compared to that for ( c )  isolated Trans 1 .O at t = 36. Note that w, is 
identical in both planes for ( c ) .  Opposite-to-mean + o, is shaded, and the contour increment for - w, 
is (a) 0.352,, (b)  0.552, and ( c )  0.1552,. 

CDI, 0.5 clearly demonstrate that CDI, 0.5 dominates the generation of small scales 
and intennittency (reflected by +w,)  when both modes are present. Although the 
vortex lines responsible for + w, are no longer symmetric about z ,  (figure 38a), the 
characteristic S-shaped folds of these lines are consistent with a scenario of asymmetric 
vortex line folding by the meridional flow cells in figure 34, in a manner similar to that 
shown schematically in figure 30. 

5.4. Comparison of single 30 mode transition scenarios 

Having found a new path to transition based upon CDI,O.S, we now evaluate its 
parametric characteristics in the context of other recently discovered transition 
scenarios involving a single 3D mode. In table 1, we describe some simulations which 
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FIGURE 36. Development of peak values of w, in z,, and z,  and domain peak of opposite-to-mean + w, 
for simultaneous CD1,0.5 and Trans 1.0 evolution as well as for isolated CDI,0.5. The evolution of 
+o, for isolated Trans 1.0 is also shown. Note that trends when both modes are present are similar 
to those for isolated CDI,0.5, especially at later times. 
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FIGURE 37. Energy spectra at t = 36 for isolated modes Trans 1.0 and CDI,0.5, 

and for both together. 

reveal some general parametric trends for the three such transition scenarios identified 
to date : (i) rib-roll interaction (translative type), (ii) establishment of chain-link-fence 
roll lattice (pure oblique mode), and (iii) pairing of rolls with opposite undulations 
(CDI,; see definition figure 13). We emphasize that this table is not intended to be an 
exhaustive list of nonlinear or even transitional simulations since we are considering 
only single 3D modes (i.e. with no random noise) which, for certain parameters, can 
produce transition. We are hopeful that information regarding isolated operation of 
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FIGURE 38. Comparison of roll vortex lines in (a, b), and of 1wJ and +y isosurfaces in (c,d);  (a, c)  
are for simultaneous evolution of CD1,O.S and Trans 1.0, and (b, d )  for isolated Trans 1.0. The 
vortex lines in (a, b) are centred around the peak 1wJ in zZn and the isosurface levels of JwJ are (c) 52, 
and (d)  0.852, and that of opposite-to-mean +o, is -0.552,. 

these transition mechanisms may shed light on more complex flows containing multiple 
3D modes. 

As shown in table I ,  fundamental oblique modes can produce transition through 
both translative-type and pure oblique mode evolution. Evidently, translative-based 
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~ 

i-p oblique Secondary Streamwise El, A, Author- 
mode pair instability phase E,, E,, hf Transitional? simulation 

_ _ _ _  

x-Fundamental 
Translative In (9, = 0) 2.5 0 0.6 No RM-OBLIN 

0.1 0 0.6 Yes RM-HIROLL? 
2.0 1.2 0.6 No MR-MID2Pt 
0.2 0.1 0.6 Yes MR-HIGH2Pt 
2.5 0 0.6 No RM-OBLOUT 

0 1.25 Yes CLMR-A@ = i~ 

1 
Bulging ou t  
(CDI,) (9, = 4 2 )  

{: 0 4 No CLMR-WIDE 
Pure oblique - 
(chain-link 
fence) 

He 1 i c a 1 
x-Subharmonic 

0) 0.03 0 8 No CLMR-HELPAIR 
{ln(#l/z: 0 )  1 0 2 No SMH pairing In (q5,12 

CDI, In (& = 0) 1 1 2 Yes SHM-CDI,0.5 

t Streamwise-invariant w, perturbations used here evolved like in-phase fundamental oblique 
modes. 

TABLE 1. Single 3D mode simulations which demarcate transition regimes. The simulation 
initialization parameters shown, defined in $3, are studied by RM - Rogers & Moser (1992), 
MR - Moser & Rogers (1993), CLMR ~ Collis et a[. (1994), SMH - Schoppa et al. (1992), and 
SHM - present work 

transition requires large 3D disturbances, whether pairing (reflected by Eliz ,,) occurs or 
not. For evolution with no 2D modes, the roll lattice produced by pure oblique modes 
causes transition for sufficiently short spanwise wavelengths. Finally, subharmonic 
oblique modes do not generate transition through isolated helical pairing evolution but 
through CDI,, equivalently the evolution of helical pairing modes after pairing, 
although an isolated CDI, mode does not produce transition even well past roll 
oversaturation. Note that CDI, is the only transition mechanism in table 1 which 
occurs for moderate-amplitude initial 3D disturbances when both rollup and pairing 
occur. Along with the result that CDI, grows alongside moderate-amplitude ribs, this 
is strong evidence that CDI, may play a prominent role in the transition of unforced 
mixing layers provided that rib excitation is not artificially strong (relative to the 2D 
modes), in which case translative-based transition may dominate. 

6.  Concluding remarks 
We have found a new mechanism which initiates mixing transition, involving 

amplifying core dynamics within rolls in a plane mixing layer. In this scenario (denoted 
CDI,), when vortices with out-of-phase undulations (due to helical pairing-type 
instability) pair, high-amplitude oscillations of core size and meridional flow occur 
within the paired roll, in a dynamically similar manner to linear CDI. Once the helical 
twisting of roll vortex lines creates a meridional flow as strong as the free-stream 
velocity, colliding spanwise flows cause a strong local ejection of roll core fluid. In turn, 
this generates a localized fine-scale vortex sheath and causes vortex lines to become 
strongly folded in nearby planes. This is accompanied by a jump of several orders of 
magnitude in small-scale energy and regions of strong internal intermittency within the 
roll. 

We find that these CDI, dynamics are not disrupted by the presence of moderate- 
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amplitude ribs or their engulfment within pairing rolls and do in fact dominate the roll 
vorticity evolution. For moderate-amplitude 3D disturbances (relative to the 2D 
component) in an unforced mixing layer, this CDI, transition mechanism may thus 
predominate. With regard to transition from low-amplitude 3D disturbances, we have 
found that CDI behaviour is excited after the second pairing by quarter-harmonic 
oblique modes. This suggests a sequence of CDI modes corresponding to each pairing, 
which may add locally with successive pairings to produce transition despite low initial 
amplitudes. In addition, since small-scale background turbulence can under certain 
conditions couple directly with the large-scale dynamics to organize and amplify 
(Melander & Hussain 1993 a), background turbulence could conceivably enhance 
transition for CDI, and other single-mode transition scenarios. Since practical flows 
typically contain 3D background turbulence, such coupling may further accentuate the 
CDI transition mechanism discussed here. 

Although our amplitude initialization was tailored to that expected in unforced 
flows, our results have implications for transition control through forcing as well. In 
particular, since strong core dynamics can also occur within fundamental rolls (as 
CDI,), transition may occur immediately after rollup if the amplitudes of the rollup 
and CDI, modes are strongly enhanced relative to the 2D pairing mode by forcing. 

A study of passive scalar transport would be especially useful in predicting how CDI 
might appear in experimental flow visualization. Unlike ribs, which are prominent in 
flow visualization, CDI, may be difficult to detect experimentally in this way even when 
present since it is strongly localized within rolls. Therefore, the development of 
advanced velocimetry techniques (e.g. DPIV, HPV) is critical in establishing the 
influence of CDI, in unforced experimental flows. See Meng & Hussain (1995) for 
the current status of HPV. 

Currently, we are investigating the effects of CDI, on spatial features of mixing, 
product formation, and reaction rate in a chemically reacting mixing layer. We 'are 
particularly interested in its characteristic strong internal flow as a possible mechanism 
to reduce flame shortening by the ejection of product trapped within the rolls. In 
supersonic mixing layers, the importance of CDI, is augmented by its excitation by 
oblique modes, which become more unstable than 2D modes for sufficiently high Mach 
number. 

CDI dynamics appear to be particularly amenable to a newly analytical tool - helical 
wave decomposition (HWD) -which involves decomposition of the velocity and 
vorticity fields into left- and right-handed polarized components, with either left- or 
right-handed local helical twists in vortex lines, using eigenmodes of the curl operator. 
Melander & Hussain (1993b) demonstrated that HWD reduces axisymmetric core 
dynamics to simply the propagation and interaction of two polarized wave packets, 
which change only slightly in form. We expect this approach to yield significant new 
results in two areas : (i) how strong local helical twisting of roll vortex lines evolves to 
cause transition for CDI, and (ii) small-scale polarized vorticity dynamics in the post- 
transitional flow. In this regard and also in modelling of nonlinear CDI features, 
nonlinear evolution of the Stuart-vortex CDI eigenmode would be very useful, 
constituting evolution in a clean environment free from inessential perturbations. 

It is conceivable that amplification of core dynamics similar to CDI may be 
responsible for transition in other shear flows as well, because of CDI's high 
localization within the vortex core and its apparent insensitivity to the vortex 
geometry. In addition, our results may also apply to isotropic turbulence dynamics, 
where non-uniform core vortices are prevalent (She, Jackson & Orszag 1990; Vincent 
& Meguzzi 1994) and are likely to be subject to the effects of core dynamics. 
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Appendix A. Evolution equation for 7 
In this Appendix, we derive equation (3), the evolution equation for y = w,/r  in 

cylindrical ( r ,  8, z )  coordinates. Note that this derivation and (3) are valid for a 3D fully 
nonlinear flow. By definition, 

so that using the w,-component of the vorticity equation, the evolution equation for y 
may be expressed as 

-+- (u-VW) a7 1 - -(O.VU),. 1 
at r ‘ - r  

Expansion of the advection and stretching/tilting terms of (A 2) in cylindrical 
coordinates results in 

all u ao, usaws u aw, - au, au, w,u, w, au, --+r-+--+W++--L-+,_+- +--. (A3) 
at r ar r2 a0 r2 r az r ar r2 a$ r2 r az 

Moving the u, w,/P term to the right-hand side and the w,u,/r2-term to the left-hand 
side, and using the operator definition 

a v a  a 
(0.V) = u,-+’-+u - 

ar r a@ ‘az’ 

we see that (A 3) can be expressed symbolically as 

Since the vorticity field is divergence-free, the right-hand side of (A 5 )  may be rewritten 
to yield equation (3): 

-+u*vy a7 = v.%D. 
at r 

Appendix B. Integral evolution equation for Adw 

Aew, defined as 
In this Appendix, we derive equation (6), the area-integrated evolution equation for 

dt d yd V = I,% w, f U dA - Iz, w, f U dA = Adu. 

We begin by noting that 
wzu, - U e  a% wz +--, - -  

at ’( r ) r at r at  

so that the evolution equation for w,ue/r may be determined by 
component of the vorticity equation and the u,-component 

substituting the w,- 
of the momentum 
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equation. In z ,  and z,, u, = w, = we = 0 for CDI owing to symmetry, so that expansion 
of (B 2) in this case results in 

The second and third terms on the left-hand side of (B 3) may be rewritten as: 

so that upon area integration in z ,  or z,, (B 4) becomes 

since u, ue w, vanishes at r = 0 and as r .+ 00. Similarly, the fourth and fifth terms on the 
left-hand side of (B 3 )  may be rewritten as 

so that area integration in z ,  or z, results in 

Upon area integration of (B 3) in z,, or z ,  and substitution of (B 
obtain 

(B 7) 

5 )  and (B 7 ) ,  we then 

Multiplying the continuity equation for incompressible flow by u, w , / r :  

and substituting for the last three terms on the left-hand side of (B 8), we obtain 

which is valid for fully nonlinear evolution in zo or z,, subject to the conditions 
u, = w, = w, = 0 in these symmetry planes. Using definition (B I), we finally obtain 
equation (6), which governs the evolution of core size non-uniformity (Ae,) due to 
CDI : 
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Appendix C. DNS algorithm and code validation 
We use pseudospectral methods to study the 3 D  temporal evolution of a plane 

mixing layer through direct integration of the Navier-Stokes equations. In our study, 
which focuses on the transition to turbulence, a temporal formulation is appropriate 
since transition typically involves local interactions. In addition, a much higher 
Reynolds number may be simulated for temporal rather than spatial evolution since 
very accurate spectral methods are more directly applicable. 

DNS algorithm. In the Fourier spatial expansions of velocity and vorticity, we use 
pseudospectral 8/9 k-space truncation to minimize aliasing errors (Canuto et al. 1988). 
Periodic boundary conditions are utilized in the streamwise (x) and spanwise ( z )  
directions, with free-slip, impermeable transverse ( y )  boundaries enforced by half- 
range cosy expansion of streamwise (u,) and spanwise (u,) velocities and siny 
expansion of transverse velocity (u,). The transverse domain size was chosen large 
enough to minimize interference from ‘mirror’ vortices in neighbouring domains ; the 
maximum pointwise deviation from a quiescent free stream u, on the y-boundaries 
(due to interference) remained below 3 %  throughout the course of all simulations. 
Time-stepping was performed using a leap-frog scheme with an occasional Euler step 
to dampen its weak instability. The spatial and temporal resolutions of the transitional 
simulations were chosen by comparing the late-time vorticity field, energy statistics, 
and dissipation spectrum for different resolutions. For the maximum resolution used 
for our single pairing runs (12g3), each time step required 6.3 s on a Cray C-90. 

Code validation checks. To ensure accurate operation of our DNS code, we 
initialized 2D and 3 D  instability eigenmodes of a tanh shear layer and found that the 
computed growth rates agreed within 1 YO with those obtained independently through 
stability analysis. In addition, the computed growth rates of CDI and helical pairing 
modes of the 2D Stuart vortex also agreed well with the theoretical values. Finally, we 
used the viscously decaying Taylor vortex solution to ensure proper temporal 
convergence and the exponential spatial convergence rate provided by spectral 
methods. 
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